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Abstract

We study the term structure of interest rates in an endowment economy with noisy
information and CRRA preferences. Exogenous prices and consumption consist of
both temporary and permanent components, but the household observes only their
aggregate values. We show that on average the term spread in this environment is
positive and on a scale close to what we observe in the data, a fact that many existing
macroeconomic models struggle to reproduce without very large coefficients of relative
risk aversion. In our partial-information framework, uncertainty about the decompo-
sition of the endowment and prices into their temporary and permanent components
combined with a negative correlation in consumption growth explain why the slope of
the yield curve is positive on average. We estimate our model using Bayesian methods
and US data from 1961–2007 and find that the average interest rate spread is 0.85%,
compared with 0.98% in the data. Further, we estimate a coefficient of relative risk
aversion of only 4.86. Noisy information accounts for 44% of the scale of the term pre-
mium, with the remainder principally explained by real activity and nominal factors
playing only a small role.
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1 Introduction

Interest rates play an important role in macroeconomic models, representing an individual’s

willingness to transfer wealth into the future, attitude towards risk, and behaviour in re-

sponse to uncertainty. For this reason, the ability of macroeconomic models to match some

basic properties of interest rates—and asset prices in general—is an important considera-

tion in model evaluation. Despite this attention, standard macroeconomic models produce

long-term bond premia that are far too small compared with what we observe in the data.

The models that are capable of replicating this feature of the data usually do so by using

non-standard preferences—typically the recursive preferences proposed by Epstein and Zin

(1989) or external habit formation as in Wachter (2006)—and often rely on a negative corre-

lation between consumption and inflation and very large coefficients of relative risk aversion.

Outside of macro-finance applications, however, these preferences are used considerably less

than the standard Constant Relative Risk Aversion (CRRA) utility. While much has been

learned from the existing approaches, a model with standard CRRA preferences capable of

producing a sizable term premium remains an important topic given that these preferences

feature in the vast majority of macroeconomic models and the vital importance of the term

structure of interest rates for monetary authorities.

In this paper, we show that incorporating noisy information into a model with CRRA

preferences can indeed reproduce a term spread on a scale close to what we observe in the

data. In each period households receive an endowment consisting of both transitory and

permanent components. The household, however, observes only the total endowment, not

its individual components. This gives rise to a signal extraction problem as they forecast

future economic activity to price bonds. Our model environment reflects the reality that

individuals are inundated with imprecise and often contradictory information about current

and future economic conditions. The exogenous process for the endowment implies that

consumption growth is negatively correlated, which leads to a positive term premium as in

Campbell (1986). Backus et al. (1989) consider a monetary extension of the Mehra and
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Prescott (1985) model, showing that exchange models of this type cannot account for the

scale of bond risk premia given the variability of consumption in the data. In our model,

however, the signal extraction problem results in additional uncertainty which amplifies the

household’s forecast variance, leading to a larger slope of the yield curve compared with a

full-information version of the model. The exogenous price level follows a process similar to

the endowment and affects the yield curve in a similar manner. The term premium depends

on the relative variances of the transitory and permanent components and the degree of risk

aversion. Short-run economic fluctuations affect the slope of the yield curve and explain

variations of the term structure over time.

We estimate the model using Bayesian methods and US bond yields from 1961–2007,

which allows us to measure the contribution of the underlying causes behind the size and

variability of the term premium.1 We estimate an average spread between 10-year and 3-

month yields of 0.85%, compared with 0.98% in the data. Not only are we able to match

the scale of the term spread, our model also estimates a coefficient of relative risk aversion

of only 4.86, considerably smaller than what is found in many term structure models. By

comparison, a full-information model with perfect information produces an interest rate

spread that is only about half the size, highlighting the important role for partial information

in explaining the average size of the term premium. We then show that in terms of economic

variables, real factors are the dominant force behind the size of the term premium, with

nominal factors having only a small role. This is not because there is more variability in

short-run real activity relative to prices, but rather because of the moderate value of risk

aversion which amplifies the volatility of real activity in the term premium.

To generate a sizeable term premium requires a departure from standard macroeconomic

frameworks. One branch of literature offers imperfect information as an explanation for an

upward-sloping term premium, which is the approach we follow in this paper. Our paper is

closely related to recent work by Tanaka (2024), who studies the countercyclicality of term

1We extend the sample until 2019 in Section 4.3. The shorter sample of our benchmark model avoids the
zero lower bound period.
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premia using a small-scale New Keynesian model with noisy information about productivity.

Our partial equilibrium framework is distinct because we remain agnostic about the economic

forces driving prices and consumption and consider a simpler noisy information mechanism.

In fact, our model includes only a single structural equation—the Euler equation, the building

block of the consumption-based asset pricing model. While Tanaka (2024) uses recursive

preferences proposed by Epstein and Zin (1989), which requires a very large value for the

coefficient of relative risk aversion to fit empirical moments, we are able to produce a sizable

term spread using a simple model with standard CRRA preferences without relying on a large

coefficient of risk aversion. Empirical estimates of the coefficient of relative risk aversion are

found to be around 1, as shown by Chetty (2006). Another key advantage of our approach

is that the estimated term spread remains substantial even when the correlation between

consumption growth and inflation is positive, as is the case with demand shocks. The model’s

simplicity also enables us to derive analytically the role played by noisy information for the

size of the term spread.

Other papers that focus on imperfect information include Kozicki and Tinsley (2005),

Dewachter and Lyrio (2008), and Dewachter et al. (2011). Using a model with asymmetric

information and learning dynamics, Kozicki and Tinsley (2005) show that departures from

rational expectations can explain the rejection of the expectations hypothesis. Dewachter

and Lyrio (2008) introduce departures from rational expectations into a New Keynesian

model with habit formation and show that the model fits the term structure of interest

rates and inflation expectations well. However, Dewachter et al. (2011) show that, while

asymmetric information and learning may play an important role, on their own they do not

appear sufficient to explain time variation in the term premium. In their learning dynamics

model, the term premium is driven entirely by differences between perceived and actual

inflation and interest rates. By contrast, in our Noisy Information model, expectations of

all variables are affected by imperfect information.

A second branch of literature departs from the benchmark macroeconomic utility func-
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tions. Campbell and Cochrane (1999), Wachter (2006), and Christoffel et al. (2011) use

models where preferences feature habit formation, so that individuals dislike large changes

from previous levels of consumption. This approach can generate a positive term premium,

but in many cases this result hinges on a negative covariance between inflation and con-

sumption growth, and typically comes at the price of deteriorating model fit along other

dimensions such as excess volatility of output, labor, and the real wage, as shown by Rude-

busch and Swanson (2008).

Because of this limitation, other research, including Piazzesi and Schneider (2007), Rude-

busch and Swanson (2012), Andreasen (2012), van Binsbergen et al. (2012), Kozak (2022),

and Kliem and Meyer-Gohde (2022) uses the recursive preferences proposed by Epstein

and Zin (1989). As with most of the models using habit formation, the term premium in

these models hinges on a negative covariance between inflation and consumption. A reces-

sion caused by supply-side factors will typically increase inflation and decrease consumption.

Higher-than-expected inflation erodes the return on long-term bonds, which makes them less

valuable in periods of low consumption, exactly when households would like to use their sav-

ings to increase consumption. As a result, a positive term premium reflects a hedge against

inflation risk. This same mechanism is at play in the model of rare disasters presented by

Gabaix (2012). Of course, if the covariance between inflation and consumption is instead

positive, as expected following demand shocks, the same intuition implies the term premium

should be negative, so this mechanism seems unlikely to account for the fact that estimates

of the term premium are nearly always positive.

Models featuring Epstein-Zin preferences also require a very large value for the coefficient

of relative risk aversion, many times the typical estimates found in the data. This is not

the case for the Noisy Information model, which can explain a substantial fraction of the

term premium for only moderate values of risk aversion. This is true whether consumption

and inflation are positively or negatively correlated, a desirable feature of the model given

that the relationship between inflation and real activity characterized by the Phillips curve
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appears to have changed in the recent past, as demonstrated by Del Negro et al. (2020) and

many other papers.

Finally, other models generate a non-trivial term premium by introducing financial mar-

ket frictions. For example, Chen et al. (2012), Gertler and Karadi (2013), and Carlstrom

et al. (2017) rely on market segmentation and preferred habitat environments to produce

movements in the term premium. These models allow an important role for the supply of

bonds to impact the term spread, consistent with recent empirical evidence for Germany by

Billio et al. (2025). In these cases, however, the term premium is driven by the degree of

market segmentation so that the causes behind the term premium lack a theoretical under-

pinning and hence remain unknown. Other analyses at the intersection of macroeconomics

and finance of the term structure are summarized in Gürkaynak and Wright (2012).

The remainder of this paper proceeds as follows. In section 2 we present the noisy infor-

mation model and derive the term premium for real and nominal bond yields, showing it is

positive and increasing in bond maturity. Section 3 describes the data, the Bayesian estima-

tion method, and reports parameter estimates. Section 4 compares bond yields predicted in

the model from those in the data, presents the main results, and explores the sensitivity of

our findings to alternative specifications. In Section 5, we report on the estimated degree of

noisy information and show how it impacts the household’s expectations relative to those of

the econometrician. Section 6 concludes. Details of the derivations and estimation algorithm

are included in the Appendix.

2 An endowment economy with noisy information

In this section, we present an endowment economy model with noisy information. Section

2.1 considers a simple univariate model for consumption and derives the term premium for

real yields, which builds intuition for how noisy information affects the yield curve. Section

2.2 presents the benchmark multivariate model for consumption and prices, which we will
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estimate in later sections, and derives the yield spread for nominal bonds.

2.1 Yields on real bonds

We consider an endowment economy where a representative household receives Ct consump-

tion goods in period t. The endowment consists of both permanent and temporary compo-

nents, but the household observes only the total endowment. Because households do not

observe the individual components, they first solve a signal extraction problem using the

Kalman filter to forecast future consumption, which they use to price m-period bonds.

The log endowment, ct, is the sum of a permanent component, τc,t, which follows a

random walk, and a white noise temporary component, ηc,t:

ct = τc,t + ηc,t,

τc,t = δc + τc,t−1 + ϵc,t.

(1)

The error terms, ηc and ϵc, are independent and normally distributed:

ηc,t
ϵc,t

 ∼ N


0
0

 ,

σ2
ηc 0

0 σ2
ϵc


 . (2)

Note that (1) implies that consumption growth is negatively serially correlated2 with the

strength of this correlation determined by the variance of the temporary component:

cov(∆ct+1,∆ct) = −σ2
ηc .

All parameters are observed by the household, as is the aggregate value of consumption,

but the temporary and permanent components are not individually observable. Here, aggre-

gate consumption will act as a noisy signal of the underlying permanent component. This

2In Section 4.3 we relax this assumption by allowing for AR(2) dynamics so that consumption growth
may be positively or negatively serially correlated.
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complicates the household’s forecasting problem, as we illustrate below.

The representative household has standard CRRA preferences, discounts future utility

at rate ρ, and maximizes expected lifetime utility:

E0

∞∑
t=0

e−ρt c
1−γ
t − 1

1− γ
,

where the parameter γ ≥ 0 denotes the degree of risk aversion. The household prices m-

period real bonds, qrt,m, using the Euler equation:

qrt,m = e−ρmCγ
t Et[C

−γ
t+m]. (3)

When the temporary and permanent components are observable, the expressions above as

well as the properties of the log-normal distribution can be used to get closed-form solutions

for bond prices of arbitrary maturity. In our model, however, the household observes only

total consumption, not its individual components. In this environment, which is similar to

the model presented by Lorenzoni (2009), the household forecasts future consumption using

the Kalman filter. Uncertainty over the decomposition of consumption into its temporary

and permanent components gives rise to a yield curve that slopes upwards on average.

Despite the ubiquity of full-information rational expectations, models such as ours, where

agents continue to behave rationally but have only partial information, have a long history

in economics. Lucas (1972) presents a model where agents cannot distinguish between shifts

of real and nominal demand, so that changes to the money supply can have real effects. This

framework is extended by Woodford (2003) to include monopolistically competitive pricing

and imperfect precision of others’ subjective perceptions of the economy. Our environment is

more similar to Kydland and Prescott (1982) and Tanaka (2024), who assume that technology

consists of the sum of temporary and persistent components, but that agents observe only

a noisy indicator of the total level of technology. Coibion and Gorodnichenko (2012, 2015),

Beckmann and Reitz (2020), and Shintani and Ueda (2023) derive predictions about the
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forecast errors of agents to provide empirical support for noisy information models.

As shown in equation (3), the bond price is determined by current and forecasts of

future consumption, which evolve as in (1). Because the individual components, τc,t and ηc,t,

are unobserved, the household uses the Kalman filter to forecast future consumption. An

implication of the Kalman filtering exercise is that expectations of the state variables evolve

slowly in response to new information. When the Kalman filter has converged, expectations

of the current permanent and temporary components based on period t information are:

τc,t|t =
1/σ2

τc

1/σ2
τc + 1/σ2

ηc

(δc + τc,t−1|t−1) +
1/σ2

ηc

1/σ2
τc + 1/σ2

ηc

ct, (4)

ηc,t|t =
1/σ2

τc

1/σ2
τc + 1/σ2

ηc

(ct − δc − τc,t−1|t−1), (5)

where σ2
τc ≡ V art−1(τc,t) is the solution to the Riccati equation: σ2

τc = (1/σ2
ηc+1/σ2

τc)
−1+σ2

ϵc .

Equation (4) shows that the forecast of the permanent component is a weighted average of

prior and new information. As σ2
ηc → 0, ct becomes a perfect signal of the trend component,

so that the second term dominates and no weight is placed on old information. As σ2
ηc → ∞,

ct becomes instead a very noisy signal of τc,t so that the household places no weight on

new information. And as in the standard Noisy Information model, expectations have a

backward-looking component because households are slow to respond to new information.

Define yldrt,m ≡ −m−1 log qrt,m as the yield on an m-period real bond. From the properties

of log-normal variables, we have:

yldrt,m = ρ+ γδc −
1

m
γηc,t|t −

1

2

1

m
γ2(σ2

τc + (m− 1)σ2
ϵc + σ2

ηc), (6)

which shows that real bond yields depend negatively on the household’s expectation of the

temporary component of consumption.

Using equation (6) to compare yields on an m- and one-period bond, we can show that
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the spread between short- and long-run bonds will be time-varying and on average positive:3

yldrt,m − yldrt,1 = (1− 1/m)γ︸ ︷︷ ︸
> 0

ηc,t|t + 0.5γ2(1− 1/m)(σ2
ηc + (1/σ2

ηc + 1/σ2
τc)

−1)︸ ︷︷ ︸
> 0

. (7)

The first term is time-varying and depends on the household’s expectation of the current

state of the economy. When ηc,t|t > 0, the household believes the economy is above trend and

wants to transfer some of their endowment to the future, which lowers interest rates. Interest

rates will then be expected to be higher in the future, when the endowment is expected to

return to trend. This explains why the yield curve slopes upwards in this state. Likewise,

when the economy is below trend, expected future interest rates will be less than the current

interest rate and the real yield curve may be downward sloping or inverted. Short-run

fluctuations of consumption can thus explain why the slope of the yield curve varies over

time and can be positive or negative. Because ηc,t|t is mean zero, however, this term alone

cannot explain why the yield curve slopes upwards on average. The second term of equation

(7) represents the term premium of the real yield curve.4 It is time-invariant, positive, and

increasing in maturity m, so that the yield curve will on average be upward sloping. The

term premium is a positive function of the degree of risk aversion (γ), the variance of the

temporary component (σ2
ηc), and that of the filtered estimator of trend consumption (σ2

τc).

By comparison, under full-information, the difference between yields on an m- and one-

period bond is:

(1− 1/m)γηc,t + 0.5γ2(1− 1/m)σ2
ηc . (8)

The second term is again positive and increasing in maturity, indicating an upward sloping

yield curve. The intuition behind this result is explained by Campbell (1986) and follows

from the negative serial correlation in consumption growth. A positive endowment shock

3See appendix A for the derivation of real bond yields.
4See calculation in appendix B.
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raises bond prices, which leads to a capital gain for long-run bond holders. But this capital

gain occurs in a period when consumption is high, so that marginal utility is low. And,

because consumption growth is negatively serially correlated, marginal utility is expected to

be higher in the future, when consumption will be lower. Long-run bonds are thus undesirable

to hold, which leads to a positive term premium. But this term alone cannot account for

the scale of the term premium, as pointed out by Backus et al. (1989).

Comparing (7) and (8) we see that noisy information adds two features to the model.

First, because the current transitory component of consumption is unobservable, ηc,t|t will

be slow to adjust to new information. Second, the term premium of the yield curve, which

is the final term in equations (7) and (8), will be larger under partial information:

0.5γ2(1− 1/m)(σ2
ηc + (1/σ2

ηc + 1/σ2
τc)

−1)︸ ︷︷ ︸
Partial info.

> 0.5γ2(1− 1/m)σ2
ηc︸ ︷︷ ︸

Full info.

which follows from:

0.5γ2(1− 1/m)(1/σ2
ηc + 1/σ2

τc)
−1 > 0. (9)

The term premium is larger under partial information because there is greater uncertainty

about future economic variables when the current state variables are not observable. This

amplifies the household’s forecast variances, leading to a larger term premium for any given

level of risk aversion, γ. Equation (9) shows that the variances of both the short- and long-

run components matter under partial information, either directly or indirectly through σ2
τc .

That is different from the full-information case, where the term premium of the yield curve

is explained entirely by the variance of the short-run component.
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2.2 Yields on nominal bonds

We now turn to the nominal yield curve. To price nominal bonds we need to model the

joint behavior of consumption and prices. We now assume that both consumption and

the aggregate price level, Pt, consist of permanent and temporary components. As in the

previous subsection, the household observes only the total endowment and the overall price

level, not their individual components.

The log price level, pt, is the sum of a permanent component τp,t, which follows a random

walk, and a white noise temporary component, ηp,t:

pt = τp,t + ηp,t,

τp,t = δp + τp,t−1 + ϵp,t.

(10)

Consumption continues to evolve as in (1) and the errors, ϵ and η, are normally distributed:



ϵp,t

ϵc,t

ηp,t

ηc,t


∼ N


 0

0

 ,

 Σϵ 0

0 Ση


 , (11)

where:

Σϵ =

 σ2
ϵp σϵpϵc

σϵpϵc σ2
ϵc

 and Ση =

 σ2
ηp σηpηc

σηpηc σ2
ηc

 .

Consumption and prices are thus determined by a multivariate unobserved components

model, a popular empirical model used to decompose macroeconomic variables into trend

and cyclical components. Models of this type were first presented by Watson and Engle

(1983) while Kuttner (1994) provides an early application to estimate potential output.

Mitra and Sinclair (2012) show that estimates of latent state variables can be sensitive to
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assumptions about the correlation of their error terms, an extension of the same result for the

univariate unobserved components model first shown by Morley et al. (2003). We allow for

the two temporary components to be correlated, and likewise for the errors to the permanent

components, but there is no correlation between the temporary and permanent components,

as indicated by the block diagonal covariance matrix.

Using the structure of prices and consumption, the household prices m-period nominal

bonds, qnt,m, using the Euler equation:

qnt,m = e−ρmCγ
t PtEt[C

−γ
t+mP

−1
t+m]. (12)

Prices and consumption evolve jointly according to equations (1), (10) and (11), which

we can express compactly in matrix notation:

xt = Λαt (13)

αt = µ+ Tαt−1 + ut, ut ∼ N(0,Σu), (14)

where xt = [pt, ct]
′, αt = [τp,t, τc,t, ηp,t, ηc,t]

′, and:.

Λ =

 1 0 1 0

0 1 0 1

 T =

 I2 02×2

02×2 02×2

 .

From the Euler equation (12) and using Tm = T , the yield on a nominal bond maturing

in m periods is:

yldnt,m = ρ+ δp + γδc −
1

m
ηp,t|t −

1

m
γηc,t|t −

1

2

1

m
[1 γ]ΛMt+m|tΛ

′[1 γ]′, (15)

where Mt+m|t = E[(αt+m − α̂t+m|t)(αt+m − α̂t+m|t)
′] is the mean squared prediction error

of the state variables. We can write the difference between yields on long- and short-run
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nominal bonds as:

yldnt,m − yldnt,1 = (1− 1/m)(ηp,t|t + γηc,t|t) + 0.5[1 γ]Λ(Mt+1|t − 1/mMt+m|t)Λ
′[1 γ]′. (16)

The first term says that the yield curve will be upward sloping when either consumption

or prices are above trend. This is analogous to the time-varying component in the yield

spread for real bonds. Here, when ηp is positive, the temporary component of the price

level is expected to be lower in the future when it returns to trend. The household thus

anticipates deflationary pressure, which lowers current interest rates relative to expected

future interest rates, steepening the yield curve. The second term is the term premium and

will be positive because both consumption growth and growth in the price level are negatively

serially correlated. And as before, partial information leads to additional uncertainty and

hence larger forecast variances, which amplifies this term compared with the full-information

case.

3 Estimation details

3.1 Data

We estimate the model using quarterly US data over the period June 1961 to December 2007.

We use the BEA’s series of personal consumption expenditures, deflated by population and

the CPI, as our measure of consumption, and the CPI is our measure of prices. Both variables

enter the state space model in logs. We use constant-maturity zero-coupon Treasury yield

curve data from Liu and Wu (2021) at maturities m = 3, 6, 12, 18, 24, 36, 48, 60, 84, and 120

months.
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3.2 State space representation

The presence of partial information complicates estimation because neither the model’s

household nor the econometrician observes the temporary and permanent components of con-

sumption and prices. We follow the approach proposed by Blanchard et al. (2013), which in-

volves treating the household’s filtered expectations of these components (τp,t|t, τc,t|t, ηp,t|t, ηc,t|t)

as additional state variables. The state vector is then:

˜
αt = [τp,t, τc,t, ηp,t, ηc,t, τp,t|t, τc,t|t, ηp,t|t, ηc,t|t]

′, (17)

which evolves as:

˜
αt =

˜
µ+

˜
T
˜
αt−1 +

˜
Rut. (18)

Notice we use a
˜
to distinguish the econometrician’s state variables and parameter matrices

from those of the household. The measurement equations map the observable variables—

consumption, prices, and bond yields—to the state variables:

˜
xt =

˜
d+

˜
Λ
˜
αt +

˜
vt,

˜
vt ∼ N(0,Σv), (19)

where
˜
vt are measurement errors. These errors are zero for consumption and the price level

but may be non-zero for bond yields. Appendix C shows how the parameter matrices of

this state space model relate to the underlying model parameters, which we estimate using

Bayesian methods.

3.3 Estimation method

The model has a total of 20 parameters: the two structural parameters (the discount rate ρ

and the degree of risk aversion γ), the average growth rates of consumption and the price level

(δc and δp), the six free parameters in the covariance matrix Σu, and the ten measurement
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error variances. To estimate these parameters we employ a random walk Metropolis-Hastings

algorithm, the details of which we outline in Appendix D.

Table 1 shows the prior distributions for the model parameters. The final two columns

show the hyperparameters describing the relevant distribution. The two structural parame-

ters, ρ and γ, both follow a Gamma distribution, which restricts them to the positive domain.

We choose the shape (τ1) and scale (τ2) parameters for the prior distribution of ρ so that the

median of the annualized discount rate is around 0.45%, with 5% and 95% quantiles of 0%

and 3.84%. This offers a relatively diffuse prior over reasonable values for this parameter.

Likewise, the shape and scale parameters governing the distribution of γ are chosen so that

γ has a median around 2 with 5% and 95% quantiles of 1.25 and 2.89. Our prior thus assigns

a relatively large probability to low values of γ, and our goal is to see whether a low estimate

of the degree of risk aversion can deliver a sizable term premium. The priors of δp and δc,

are chosen to reflect a prior average annualized inflation rate of 3% and consumption growth

rate of 2%, with 5% and 95% quantiles of (0.53%, 5.47%) and (0.36%, 3.64%), respectively.

We use a data-driven prior for the variances of the transitory and permanent error com-

ponents. We first use an HP filter to decompose the price level and consumption into their

trend and stationary components. Call these τhp and ηhp. From these, we estimate sample

variances, fitting the filtered trends to a random walk with drift and the filtered stationary

components as white noise. Call these covariance matrices Σϵ,hp and Ση,hp. We use these ma-

trices to parameterize our priors for Σϵ and Ση, taking a relatively small degrees of freedom

to allow for more uncertainty around these prior estimates. Finally, we use diffuse priors for

the variances of the measurement errors, σ2
vi
.
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Table 1: Prior distributions

Parameter Distribution τ1 τ2
ρ Gamma 0.5 0.5
γ Gamma 16 0.125
δp Normal 0.75 0.375
δc Normal 0.5 0.25
Σϵ Inverse Wishart 4 Σϵ,hp

Ση Inverse Wishart 4 Ση,hp

σ2
vi

Inverse Gamma 0.01 0.01

Note: the final two columns show the pa-
rameter values governing the relevant prior
distribution. For the Gamma and Inverse
Gamma distributions these are the shape
and scale parameters, for the Normal dis-
tribution these are the mean and standard
deviation, and for the Inverse Wishart they
are the degrees of freedom and scale ma-
trix.

3.4 Parameter estimates

Table 2 reports quantiles of all model parameters from both prior and posterior distribu-

tions.5 The density of γ, the degree of risk aversion, has a median of 4.86 with 5% and 95%

quantiles of 3.97 and 5.91, indicating some precision around this estimate. This estimate is

considerably smaller than much of the existing literature, particularly those works relying

on recursive preferences. For example, in models proposed by Tanaka (2024) and Rudebusch

and Swanson (2012), the relative risk aversion coefficient is 55 and 110, respectively. In

Piazzesi and Schneider (2007), the coefficient is 59 in the benchmark model and needs to

increase to 85 in order to match the average slope of the yield curve observed in the data.

Other examples of models with recursive preferences that rely on a very large coefficient of

risk aversion include van Binsbergen et al. (2012) (66) and Kliem and Meyer-Gohde (2022)

5Figure A.3 shows prior and posterior densities of the two structural parameters. We multiply ρ by 4 so
it has the interpretation as the annualized discount rate. Both posterior densities are considerably different
from their respective prior distributions, indicating that the data are informative about these parameters.
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(90). Notable exceptions are Andreasen and Jørgensen (2020) who propose a utility kernel

for Epstein-Zin preferences and find that a low relative risk aversion coefficient of 5 is able

to match both the equity and bond premium and Creal and Wu (2020) who estimate a value

of 1.7 in a model with Epstein-Zin preferences with a stochastic rate of time preference.

Likewise, we find relatively low values for the discount rate. The median annualized

discount rate is only 0.05 (i.e., 5 basis points) with 5% and 95% quantiles of 0 and 0.39.

This implies a median discount factor of β = e−0.05/100 = 0.999. Creal and Wu (2020)

estimate a value of β = 1.002, similar to the calibrated value of β = 1.004 from Piazzesi and

Schneider (2007) and the estimated value of β = 0.997 of van Binsbergen et al. (2012), all of

which imply a very low discount rate. Herbst and Schorfheide (2016) estimate a small-scale

New Keynesian model by Bayesian methods and find a discount rate of 0.42, somewhat

larger than our estimate of 4ρ.
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Table 2: Estimated parameter values

Parameter Posterior Prior Description
4ρ 0.05 0.45 Annualized discount rate.

(0.00, 0.39) (0.00, 3.84)

γ 4.86 1.96 Risk aversion parameter.
(3.97, 5.91) (1.25, 2.89)

4δp 4.97 3.0 Annualized average growth rate of the price
(4.72, 5.21) (0.53, 5.47) level.

4δc 0.35 2.0 Annualized average growth rate of
(0.27, 0.42) (0.36, 3.64) consumption.

σ2
ϵp 0.69 0.13 Variance of the errors of the permanent

(0.56, 0.87) (0.04, 0.86) component of the price level.

σ2
ϵc 1.36 0.03 Variance of the errors of the permanent

(1.12, 1.64) (0.01, 0.17) component of consumption.

σϵpϵc -0.72 0.0 Covariance between errors of the permanent
(-0.92, -0.56) (-0.12, 0.12) components.

σ2
ηp 0.42 0.67 Variance of the temporary component of the

(0.30, 0.58) (0.20, 4.52) price level.

σ2
ηc 0.24 0.92 Variance of the temporary component of

(0.17, 0.34) (0.28, 6.20) consumption.

σηpηc -0.28 0.0 Covariance between errors of the temporary
(-0.40, -0.21) (-1.67, 1.67) components.

Note: Median parameter values from posterior and prior distributions. 5% and 95%
quantiles are shown in parentheses.

4 The term structure of interest rates

In this section, we evaluate the ability of the model to match the properties of bond yields

across different maturities. The noisy information model successfully produces a yield curve

that slopes upward on average, with average yields close to the data for all maturities, and

without requiring an unreasonably large estimate of the coefficient of relative risk aversion.

We then quantify the relative contribution of real factors, nominal factors, and noisy infor-

mation for the size of the term premium.
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4.1 Bond yields

Table 3 shows average bond yields at the maturities included in our estimation sample, which

gives an idea of the average shape of the yield curve. The second column shows statistics for

the raw data, the third column shows the same statistics for our noisy information model,

and the fourth column shows these statistics for the real bond yields in that model. For our

model output, we report the median of these values across all Monte Carlo draws, with the

5% and 95% quantiles shown in parentheses. The final two rows show the average spread

between long-run (five or ten year) and short-run (three month) yields. The average ten

year to three month spread is estimated to be 85 basis points in the model compared with

98 basis points in the data, indicating that the noisy information model can successfully

reproduce the average slope of the yield curve. Most of this spread occurs over the first five

years in the model, however, indicating that the slope of the yield curve is somewhat steeper

in the model compared with the data.

The model matches average bond yields reasonably closely across all bond maturities,

but especially for bonds with maturities in the mid-range of the term structure. By contrast,

yields are somewhat too low at both the short and long end of the yield curve. The final

column indicates that the real yield curve, given by equation (6), also slopes upward on

average and in fact has a larger slope than the nominal yield curve. As we demonstrate

below, this can be explained by the negative correlation between the transitory components

of consumption and prices, which lowers the nominal term premium relative to the real term

premium.
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Table 3: Average bond yields

Maturity Data Model
(months) Nominal Real

3 5.55 5.36 0.03
(5.16, 5.55) (-0.50, 0.57)

6 5.63 5.79 0.58
(5.68, 5.90) (0.21, 0.97)

12 5.78 6.01 0.86
(5.92, 6.11) (0.56, 1.17)

18 5.89 6.09 0.95
(5.99, 6.18) (0.67, 1.24)

24 5.98 6.12 1.00
(6.02, 6.22) (0.73, 1.28)

36 6.10 6.16 1.04
(6.06, 6.26) (0.78, 1.31)

48 6.19 6.18 1.07
(6.07, 6.28) (0.81, 1.33)

60 6.27 6.19 1.08
(6.08, 6.30) (0.83, 1.34)

84 6.37 6.20 1.10
(6.09, 6.31) (0.85, 1.36)

120 6.53 6.21 1.11
(6.10, 6.32) (0.86, 1.36)

5 yr. - 3 mth. spread 0.72 0.83 1.04
(0.62, 1.06) (0.72, 1.38)

10 yr. - 3 mth. spread 0.98 0.85 1.07
(0.63, 1.08) (0.74, 1.42)

Note: Column 2 shows average bond yields in the US over the
sample period 1961–2007. Columns 3 and 4 show the median
model estimates of the nominal and real yield curves. 90%
Bayesian credible intervals in parentheses.

We now turn to assess the model’s ability to match the dynamics of bond yields. Figure

1 shows a comparison of yields on bonds maturing in three months and five years in the

data (grey line) with those predicted by the model (black line) over the 1962–2007 period.

The model predictions track the observable three-month yields quite closely over the full

sample period. Through the 1970s bond yields spike twice, both the result of higher inflation

stemming from oil price shocks. The first of these episodes is relatively short-lived, and the
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model over-predicts short-run yields in this period. The predicted bond yields track the

level of those in the data much more closely during the second oil price shock, as well as the

disinflation until around 1982.

Figure 1: Bond yields

Note: Grey lines show zero-coupon bond yields using data from Liu
and Wu (2021) at one year (top panel) and five year (bottom panel)
maturities. Black lines are the estimated bond yields from the
model at the same maturities, calculated according to (15).

The predicted five-year bond yields continue to match the dynamics seen in the data—the

correlation between the two series is 0.64—but are considerably less variable.6 This finding

is consistent with the excess volatility puzzle documented in Shiller (1979) and Piazzesi

and Schneider (2007) who show that predicted long-run yields do not capture the volatility

6Figure A.4 in the appendix shows that the dynamics in 5-year bond yields is matched quite closely once
the yields are normalized by their respective mean and standard deviation.
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present in their empirical estimates. Because the term premium is constant in our model,

the dynamics of long-run bond yields are explained by the average of the predicted, future

short-run bond yields. While predicted short-run yields are volatile enough to match the

data, they are not persistent enough to generate the predicted volatility of the long-run

yields. It is worth noting that the model correctly matches the sign of the 10 year - 3 month

spread 90% of the time over the period June 1961 to December 2007. The term spread is

positive 74% of the time in the model, compared with 90% of the time in the data.

4.2 Term premium decomposition

Next, we quantify the relative contribution of real factors, nominal factors, the covariance

between these factors, and noisy information for the size of the term premium. The term

premium can be rewritten as:7

0.5
m− 1

m

γ2σ2
ηc︸ ︷︷ ︸

Real

+ σ2
ηp︸︷︷︸

Nominal

+ γσ2
ηpηc︸ ︷︷ ︸

Covariance

+ [1 γ 1 γ]T (Σα − Σu)T
′[1 γ 1 γ]′︸ ︷︷ ︸

Noisy information

 . (20)

The first three terms in the parentheses show the contribution of the variability of the

transitory components of consumption, prices, and their covariance, while the final term

shows the contribution of noisy information. We see that maturity m affects these terms

equally so that the relative contribution of these terms does not depend on bond maturity.

Table 4 shows the relative contributions of each of these factors. We see that real factors

explain the largest fraction, while nominal factors on their own explain only 7% of the term

premium. Because households want to smooth consumption over time, short-run fluctuations

in consumption raise the term premium. The covariance between the transitory components

of consumption and prices is negative so that this term actually puts downward pressure

on the term premium. This explains why the slope of the real term structure was found

to be larger than the slope of the nominal term structure in Table 3 above. It is worth

7See appendix for calculations.

23



noting that in most models with habit formation, this negative correlation between prices

and consumption is why the nominal yield curve slopes upwards, whereas we find a negative

correlation decreases the size of the term premium, making the yield curve flatter. In our

model, a positive correlation between the transitory components of consumption and prices

raises short-run uncertainty so that short-term bonds trade at a premium to hedge against

risk. Our model is able to reproduce a sizeable term premium on a scale close to what is

found in the data even with the negative correlation estimated over the sample period.

Table 4: Term premium decomposition

Factor Share (%)
Real 96

(84, 111)
Nominal 7

(5, 12)
Covariance -47

(-66, -34)
Noisy information 44

(43, 45)

Note: Contribution of each
factor to the term premium ac-
cording to equation (20). 90%
Bayesian credible intervals in
parentheses.

Taken together, however, economic activity variables explain 96% + 7% - 47% = 56%

of the term premium, with the remaining 44% explained by noisy information. This illus-

trates the important role of noisy information to match the magnitude of the term premium

observed in the data. While a full-information model based on the multivariate unobserved

components model predicts a positive term premium, the predicted magnitude of the term

premium is only about half the size compared to that of a noisy information model.

Finally, we note from Table 2 that there is greater variability in the transitory component

of prices than consumption (σηp is larger than σηc). From equation (20) this indicates that

the importance of real activity variables in determining the term premium is not because
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there is more variability on the real side of the economy. Rather, it is the coefficient of

relative risk aversion which amplifies the importance of real activity, relative to nominal

effects.

4.3 Alternative specifications

We examine the sensitivity of our findings to two alternative specifications, with the main

results shown in Tables A.6 and A.7 found in Appendix E. First, we re-estimate the model

over a larger sample from 1961 until 2019. The shorter sample of our benchmark model

avoids the zero lower bound, when interest rates remained very low for an extended period

of time and unconventional monetary policy actions were undertaken with the specific goal of

reducing the spread between short- and long-run interest rates. Our reasoning for excluding

this period from our benchmark is twofold. First, it eases comparison with the related

literature, much of which also excludes this episode. Second, lower interest rate spreads

during this time suggest a lower term premium, which may be easier for the model to match.

Table A.6 compares average bond yields in the raw data with model estimates across different

maturities. Yields are indeed lower across all maturities, but the performance of the model

is overall very similar to the benchmark model. The estimated spread between the 3-month

and 10-year yields is 80 basis points compared with 95 basis points in the data.

Next, we extend the model to allow for AR(2) dynamics in the transitory components of

both output and the price level. As mentioned in Section 2, the positive sign on the term

premium follows from the negative serial correlation in consumption growth and inflation.

For the more general AR(2) process, serial correlation can be positive or negative depending

on the values of the autoregressive coefficients and the lag in the autocorrelation function.

Hence, the term premium can also be positive or negative depending on the estimated

parameters and may even change sign at different maturities. Table A.7 shows the results for

this alternative specification along with results for the benchmark model for easy comparison.

The model continues to match yields well for maturities up to five years; the spread between
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five-year and three-month bonds is 48 basis points, matching about 2/3 of the spread observed

in the data. At longer maturities, however, the term spread begins to decline and eventually

turns negative. Campbell (1986) shows that both positive and negative term premia are

possible for models with more general dynamics, which explains this finding. Notably, the

coefficient of risk aversion in this model actually declines to 2.59.

5 The degree of noisy information

We now turn to the degree of information frictions. In Section 2 we showed that noisy

information has two effects on the model: it increases the size of the term premium for given

values of the model parameters and it introduces a backward-looking component to the

household’s expectations of the unobserved components of consumption and prices, which

evolves slowly in response to new information. Section 4 showed that noisy information was

key for understanding the term structure of interest rates as it accounts for 44% of the scale

of the term premium. We now examine the scale of these frictions themselves and how they

influence the household’s expectations.

To summarize the degree of information rigidity in consumption and prices, we estimate

the regression proposed by Coibion and Gorodnichenko (2015), regressing the household’s

forecast errors on their forecast revisions. Let yt+h denote a macroeconomic variable y

at horizon t + h, Ftyt+h the h-quarter ahead forecast of variable y made in period t, and

Ft−1yt+h the forecast made in quarter t− 1. We estimate the following relationship between

h-quarter-ahead forecast errors and forecast revisions:

yt+h − Ftyt+h = β0 + β1(Ftyt+h − Ft−1yt+h) + errort (21)

for the log of the price level, p, and the log of real consumption, c. Positive values of

β1 can be taken as evidence of information frictions, and larger values are associated with

a higher degree of information rigidity. Table 5 presents the estimates of β1 for horizon
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h = 3 predicted by our model and using historical forecasts of the CPI and real consumption

from the Survey of Professional Forecasters (SPF) over the 1981q4–2019q4 period. Bayesian

credible intervals are in parentheses.

Table 5: Test of Information Rigidities

p c

Model
2.84 0.92

(2.74, 2.97) (0.88, 0.98)

SPF data
1.89 0.23

(0.59, 3.20) (-0.08, 0.54)

The estimates in Table 5 provide strong evidence in favour of information rigidities. While

this is not surprising given the structure of our model, the results are consistent with what is

found using professional forecasts data. In comparison, Coibion and Gorodnichenko (2015)

estimate this relationship using SPF forecasts of US variables over the 1968–2014 period.

They estimate β̂1 = 1.141 for inflation at h = 3 and about 0.25 for real consumption.

We note that the model’s predictions of the household’s forecasts are based only on data for

consumption, prices, and bond yields, whereas those authors estimate their regressions using

forecasts taken from the Survey of Professional Forecasters. Even without survey data, our

model estimates of information rigidities are qualitatively similar to what is found in the

data.

Table 5 also indicates that information frictions are much larger for prices than for con-

sumption. Recall from the discussion in Section 2 that, without the transitory components,

consumption and prices would be perfect signals of their underlying trends. As the variances

of the transitory components increase, it becomes harder for the household to distinguish the

signal from the noise, so that larger variances of the transitory components result in more

information rigidity. From Table 2, we see that σ2
ηp is much larger than σ2

ηc—both in abso-

lute terms as well as relative to the variance of the respective permanent component—which

explains why we find stronger evidence of information rigidities in prices than consumption.

Finally, an important difference between the dynamics of bond yields in the full- and
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partial-information models is the discrepancy between the transitory components of prices

and consumption and the household’s filtered estimates of these components. Because the

household’s estimates enter as state variables in our model (recall equation (17)) we can com-

pare the smoothed estimates of these components. Figure 2 shows the smoothed estimated

temporary components (black lines) as well as the household’s estimates of the temporary

components (grey lines). Each of these series are model output, but they differ because

the econometrician’s information set includes the full sample of data (i.e., the entire time

period), whereas the household’s information set includes information only until period t.

In other words, the full sample of bond yields, consumption, and prices help to estimate the

household’s Kalman filtered forecasts of the state of the economy. When the household’s

expectations deviate substantially from the econometrician’s, providing the household with

additional sample information would have a large effect on their expectations.

The difference between the black and grey lines in Figure 2 gives an idea of the cost of

partial information. As discussed above, under partial information, expectations will be slow

to adjust to new information. We see that for both variables the household’s expectations

lag the underlying components. The biggest movements in these series occur around the late

1970s. Because these are temporary components, that indicates that a substantial amount

of the increase in inflation and decline in consumption around this time were perceived to be

temporary changes to economic activity. The differences between the black and grey lines

during this time, however, indicate that markets over-evaluated the short-run nature of these

shocks. We see that the black lines are much closer to zero, indicating that the best forecast

using all available data is that these shocks were instead explained by long-run factors. This

discrepancy is explained by information frictions.
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Figure 2: Temporary components

Note: Black lines show the estimates of the temporary components
of consumption and the price level using the Kalman smoother.
Grey lines show smoothed estimates of the household’s filtered
period-t forecasts of these components.
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6 Conclusion

We study the term structure of interest rates in an endowment economy with noisy informa-

tion. The endowment and price level each consist of temporary and permanent components,

but the household observes only the total endowment and overall price level. To forecast

future economic conditions, and hence price bonds of various maturities, the household must

first solve a signal extraction problem using the Kalman filter. This results in additional

uncertainty, raising the household’s forecast variances and leading to a larger term premium

compared with a full-information version of the model.

We then estimate the model using Bayesian methods and US data between 1961–2007.

The average spread between ten-year and three-month bonds in our partial-information

model is estimated to be 85 basis points compared with 98 basis points in the data, a

significant improvement relative to a comparable full-information model. Further, the model

does not require a very large coefficient of relative risk aversion, which we estimate to be

4.86. Without the key feature of noisy information, the estimated interest rate spread would

be only half the size of our benchmark estimates. Among economic activity variables, we

show that real factors are much more important than nominal factors, which have only a

small impact on the term premium. This is not because there is more variability on the

real side of the economy, but rather because this variability is amplified by the coefficient of

relative risk aversion.

30



References

Andreasen, M. M. (2012). An estimated DSGE model: Explaining variation in nominal term
premia, real term premia, and inflation risk premia. European Economic Review 56 (8),
1656–1674.

Andreasen, M. M. and K. Jørgensen (2020). The importance of timing attitudes in
consumption-based asset pricing models. Journal of Monetary Economics 111, 95–117.

Backus, D. K., A. W. Gregory, and S. E. Zin (1989). Risk premiums in the term structure:
Evidence from artificial economies. Journal of Monetary Economics 24 (3), 371–399.

Beckmann, J. and S. Reitz (2020). Information rigidities and exchange rate expectations.
Journal of International Money and Finance 105, 102136.

Billio, M., F. Busetto, A. Dufour, and S. Varotto (2025). Bond supply expectations and the
term structure of interest rates. Journal of International Money and Finance 150, 103217.

Blanchard, O. J., J.-P. L’Huillier, and G. Lorenzoni (2013). News, noise, and fluctuations:
An empirical exploration. American Economic Review 103 (7), 3045–3070.

Campbell, J. Y. (1986). Bond and stock returns in a simple exchange model. The Quarterly
Journal of Economics 101 (4), 785–803.

Campbell, J. Y. and J. H. Cochrane (1999). By force of habit: A consumption-based expla-
nation of aggregate stock market behavior. Journal of Political Economy 107 (2), 205–251.

Carlstrom, C. T., T. S. Fuerst, and M. Paustian (2017). Targeting long rates in a model
with segmented markets. American Economic Journal: Macroeconomics 9 (1), 205–242.

Chan, J. C. (2022). Asymmetric conjugate priors for large Bayesian VARs. Quantitative
Economics 13 (3), 1145–1169.

Chan, J. C.-C. and I. Jeliazkov (2009). MCMC estimation of restricted covariance matrices.
Journal of Computational and Graphical Statistics 18 (2), 457–480.
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A Deriving real bond prices

Taking logs of (3) and using exp (ct+m) = Ct+m gives:

log qrt,m = −ρm+ γct + log(Et[exp (ct+m)
−γ]). (A.22)

See that:

Et[ct+m] = mδc + τc,t|t,

Et[(ct+m − ĉt+m)
2] = σ2

τc + (m− 1)σ2
ϵc + σ2

ηc .

Using the properties of a log-normal distribution we then have:

Et[exp (−γct+m)] = exp (−γmδc − γτc,t|t + 0.5γ2(σ2
τc + (m− 1)σ2

ϵc + σ2
ηc)), (A.23)

so that bond yields are:

yldrt,m = ρ− 1

m
γct + γδc +

1

m
γτc,t|t − 0.5

1

m
γ2(σ2

τc + (m− 1)σ2
ϵc + σ2

ηc). (A.24)

Using ct = τc,t|t + ηc,t|t gives (6). The spread between yields on m- and one-period bonds is
then:

yldrt,m − yldrt,1 = (1− 1/m)γηc,t|t + 0.5(1− 1/m)γ2(σ2
τc + σ2

ηc − σ2
ϵc). (A.25)

Using σ2
τc − σ2

ϵc = (1/σ2
ηc + 1/σ2

ϵc)
−1 from the Ricatti equation gives:

yldrt,m − yld1t,1 = (1− 1/m)γηc,t|t + 0.5(1− 1/m)γ2(σ2
ηc + (1/σ2

ηc + 1/σ2
ϵc)

−1),

which matches (7).

B Deriving the term premium

In general, we can express the yield on a bond maturing in m periods as the average of
current and expected future one-period bond yields and a term premium:

yldt,m =
1

m

m−1∑
j=0

Et[yldt+j,1] + tpt,m. (A.26)

From (6), expected future one-period yields are:

Et[yldt+j,1] = ρ+ δp + γδc + [1 γ]Λ(T − I)αt+j|t − 0.5[1 γ]ΛMt+j+1|t+jΛ
′[1 γ]′.

From the state equations we see that:

αt+j|t = j × µ+ Tαt|t,
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which uses T j = T since there is no persistence in the temporary components. See also that
Λ(T − I)µ = 0 so that expected future bond yields are:

Et[yldt+j,1] = ρ+ δp + γδc − [1 γ]Λ(T − I)Tαt|t − 0.5[1 γ]ΛΣαΛ
′[1 γ]′, (A.27)

which uses Mt+j+1|t+j = Σα when the Kalman filter has converged.
Substituting this result into (A.26) and rearranging for the term premium gives:

tpt,m = yldt,m − 1

m
yldt,1 −

1

m

m−1∑
j=1

Et[yldt+j,1]

=
1

m
[1 γ]ΛTmαt|t −

1

m
[1 γ]ΛTαt|t − 1/m

m−1∑
j=1

[1 γ]Λ(T − I)Tαt|t

− 0.5

m
[1 γ]ΛMt+m|tΛ

′[1 γ]′ +
0.5(m− 1)

m
[1 γ]ΛΣαΛ

′[1 γ]′.

This reduces to:

tpt,m = 0.5[1 γ]Λ(Σα − 1/mMt+m|t)Λ
′[1 γ]′, (A.28)

which is time invariant when the Kalman filter has converged and Mt+m|t is a constant that
depends only on m:

Mt+m|t = Tm−1ΣαT
m−1′ +

m−2∑
j=0

T jΣuT
j′ . (A.29)

Since Σα = Mt+1|t, we see that the term premium matches the final term of the interest rate
spread in equation (16).

By comparison, in the full-information model, we have:

ΣFI
α = Σu, (A.30)

MFI
t+m|t =

m−1∑
j=0

T jΣuT
j′ . (A.31)

To decompose the different factors behind the term premium, first add and subtract the terms
Σu and 1/m

∑m−1
j=0 T jΣuT

j′ to the expression in parentheses, which allows us to rewrite the
term premium as:

tpt,m = 0.5[1 γ]Λ

(
Σu − 1/m

m−1∑
j=0

T jΣuT
j′

)
Λ′[1 γ]′

+ 0.5[1 γ]Λ

(
(Σα − Σu)− 1/m(Mt+m|t −

m−1∑
j=0

T jΣuT
j′)

)
Λ′[1 γ]′. (A.32)
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The first term shows the impact of macroeconomic variables on the term premium while the
second is due to information frictions. Using [1 γ]Λ = [1 γ 1 γ] and T j = T ∀ j > 0 we have:

Σu − TΣuT
′ =

[
02×2 02×2

02×2 Ση

]
,

1/m(Mt+m|t −
m−1∑
j=0

T jΣuT
j′) = 1/mT (Σα − Σu)T

′,

which gives:

tpt,m = 0.5
(m− 1)

m
[1 γ 1 γ]

[
02×2 02×2

02×2 Ση

]
[1 γ 1 γ]′

+ 0.5[1 γ 1 γ]((Σα − Σu)− 1/mT (Σα − Σu)T
′)[1 γ 1 γ]′. (A.33)

Finally, because there is no persistence in the transitory components and zero correlation
between the permanent and transitory errors, the lower-right quadrants of Σα and Σu will
be the same and we have:

Σα − Σu = T (Σα − Σu)T
′,

so that the term premium can be written as:

tpt,m = 0.5
(m− 1)

m
[1 γ 1 γ]

[
0 0
0 Ση

]
[1 γ 1 γ]′ + 0.5

(m− 1)

m
[1 γ 1 γ]T (Σα − Σu)T

′[1 γ 1 γ]′,

(A.34)

where the first term is due to the variability of macroeconomic conditions and the second
term arises because of information frictions. Straightforward multiplication shows that this
matches equation (20) from the main text.

C State space model

Under the assumption that the household’s Kalman filter has converged, their state variables
evolve as:

αt|t = µ+ (I − ΣαΛ
′F−1Λ)Tαt−1|t−1 + ΣαΛ

′F−1ΛTαt−1 + ΣαΛ
′F−1Λut, (A.35)

where F = ΛΣαΛ
′ and Σα = Mt|t−1 is the solution to the Riccati equation:

Σα − TΣαT
′ + TΣαΛ

′(ΛΣαΛ
′)−1ΛΣαT

′ − Σu = 0. (A.36)
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The parameter matrices from the state equation (18) are then:

˜
µ = [δp, δc, 0, 0, δp, δc, 0, 0, 0, 0]

′ (A.37)

˜
T =

[
T 0

ΣαΛ
′F−1ΛT (I − ΣαΛ

′F−1Λ)T

]
(A.38)

˜
R =

[
I

ΣαΛ
′F−1Λ

]
(A.39)

The first two elements of xt are prices and consumption so that the first two rows of
˜
d

are both 0 and the first two rows of
˜
Λ are:[
1 0 1 0 01×4

0 1 0 1 01×4

]
(A.40)

The remaining elements of xt are bond yields and the corresponding rows of
˜
d and

˜
Λ depend

on the bond maturity. For
˜
Λ, the row entry is:[

−1/m −γ/m −1/m −γ/m 1/m[1 γ]ΛTm
]

(A.41)

For
˜
d, the row entry is:

ρ+ [1 γ]Λµ− 0.5m−1[1 γ]Λ

(
Mt+m|m

100

)
Λ′[1 γ]′ (A.42)

where:

Mt+m|t = TMt+m−1|tT
′ + Σu, (A.43)

which has a time-invariant solution when the household’s Kalman filter has converged using
Mt|t−1 = Σα. Notice that the covariance matrix Mt+m|m is divided by 100 in (A.42) because
we rescale the data from decimal to percentage points. As we explain below, this rescaling
improves the efficiency of the Monte Carlo estimator because fewer draws are rejected for
fallowing outside the range of the prior distributions. Finally, the covariance matrix of
the measurement errors Σv is assumed to be diagonal with the first two elements set to
zero, because prices and consumption are decomposed into the sum of their temporary and
permanent components, both of which are state variables.

D Estimation details

Let θ be the vector of model parameters and Y the observable data, we aim to sample from
the posterior distribution of the model parameters:

p(θ|Y ) ∝ p(Y |θ)p(θ), (A.44)

where p(Y |θ) is the density of the likelihood and p(θ) the prior distribution of the param-
eters. With our assumption of normal errors, the likelihood can be evaluated using the
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Kalman filter. But sampling from the posterior distribution is challenging because the prior
distributions of the structural model parameters result in a posterior that does not follow a
standard distribution. This problem is typical of the estimation of structural macroeconomic
models, and we follow the standard solution which is to employ a random walk Metropolis-
Hastings algorithm. We sample candidate draws from a Normal proposal distribution and
accept these draws with a probability determined by the value of the likelihood function at
the candidate draw (see Herbst and Schorfheide (2016) for a detailed review of this method).
Because of the moderate number of parameters, we split up the parameters into four blocks:
the first block contains the two structural parameters (ρ and γ), the second block contains
the average growth rates for consumption and prices (δc and δp), the third block contains the
variances of the shocks to the transitory and permanent components, and the fourth block
contains the measurement error variances. The algorithm then proceeds as follows:

0. Choose initial mean (θ0) and variance (c2Σ) for the proposal distribution.

1. For block b, draw a candidate θ̃b from the distribution N(θb,s−1, c
2Σb).

2. Accept the draw θ̃b with probability:

min

{
1,

p([θ̃<b,s, θ̃b, θ̃>b,s−1]|Y )

p([θ̃<b,s, θ̃b,s−1, θ̃>b,s−1]|Y )

}
,

otherwise set θb,s = θb,s−1.

3. Repeat steps 1 and 2 for each block.

4. Repeat steps 1 to 3 for N draws.

We set N = 500, 000 and discard the first N/2 draws to allow the algorithm to converge. We
initialize the algorithm by setting θ0 to the posterior median of ρ and γ and the posterior
mode of the prior distribution of the remaining parameters. To parameterize Σ, we run a
preliminary Markov Chain of 500,000 samples using an identity matrix for Σ with c = 0.05.
We then re-estimate the model setting Σ to the covariance matrix of θ from the initial run
and increasing c to achieve an acceptance rate of around 30%.

To ensure that the proposal distribution gives a positive definite covariance matrix Σu

we reparameterize this matrix using the decomposition LΣuL
′ = D where D is a diagonal

matrix and L is a lower-diagonal matrix with ones on the main diagonal. Chan and Jeliazkov
(2009) show that an Inverse Gamma prior distribution for the diagonal elements of D and
a Normal prior distribution for the lower diagonal elements of L implies a Wishart prior
distribution for Σ−1

u . Chan (2022) further shows the choice of priors for these new matricies
that correspond with the priors for Σϵ and Ση listed in Table 1.

A final challenge is that, because we use a Normal distribution as the proposal distri-
bution, it may propose draws for some parameters that fall outside the domains of their
prior distributions. This is primarily an issue for ρ and the measurement errors when the
bond yields are in decimal percent because these parameters will be very close to zero. In
principal, these draws can simply be skipped, but if there are many such draws the algorithm
will be inefficient. To address this, we multiply the data by 100 to convert to percentage
points.
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E Additional tables and figures

Figure A.3: Kernel densities of structural parameters

Note: Kernel densities of the prior (grey) and posterior (black) distributions of the
discount factor ρ and degree of risk aversion γ based on 250,000 draws using a
random walk Metropolis-Hastings algorithm.

A-6



Figure A.4: Standardized bond yields

Note: Grey lines show zero-coupon bond yields using data from Liu
and Wu (2021) at one year (top panel) and five year (bottom panel)
maturities normalized using their respective mean and standard
deviation. Black lines are the estimated bond yields from the model
at the same maturities, calculated according to (15), normalized
using their respective mean and standard deviation.
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Table A.6: Average bond yields in the extended sample

Maturity Data Model
(months) Nominal Real

3 4.52 4.33 -0.63
(4.12, 4.55) ( -1.15, -0.07)

6 4.59 4.74 -0.09
(4.63, 4.86) (-0.43, 0.28)

12 4.72 4.94 0.18
(4.85, 5.04) (-0.08, 0.46)

18 4.83 5.01 0.27
(4.91, 5.11) (0.03, 0.53)

24 4.91 5.04 0.31
(4.94, 5.15) (0.09, 0.56)

36 5.02 5.08 0.36
(4.97, 5.19) (0.14, 0.59)

48 5.11 5.10 0.38
(4.98, 5.21) (0.17, 0.61)

60 5.18 5.11 0.39
(4.99, 5.22) (0.19, 0.62)

84 5.29 5.12 0.41
(5.00, 5.23) (0.21, 0.63)

120 5.47 5.13 0.42
(5.01, 5.24) (0.22, 0.64)

5 yr. - 3 mth. spread 0.66 0.78 1.02
(0.52, 1.02) (0.63, 1.39)

10 yr. - 3 mth. spread 0.95 0.80 1.04
(0.53, 1.05) (0.64, 1.43)

Note: Column 2 shows average bond yields in the US over the
sample period 1961–2019. Columns 3 and 4 show the median
model estimates of the nominal and real yield curves. 90%
Bayesian credible intervals in parentheses. The median coeffi-
cient of risk aversion is γ = 6.13 and the median discount rate is
4ρ = 0.06.
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Table A.7: Average nominal bond yields: Alternate specification

Maturity Data Benchmark AR(2)
3 5.55 5.36 5.77

(5.16, 5.55) (5.64, 5.89)
6 5.63 5.79 5.83

(5.68, 5.90) (5.69, 5.98)
12 5.78 6.01 6.08

(5.92, 6.11) (5.98, 6.17)
18 5.89 6.09 6.18

(5.99, 6.18) (6.10, 6.27)
24 5.98 6.12 6.23

(6.02, 6.22) (6.15, 6.32)
36 6.10 6.16 6.27

(6.06, 6.26) (6.18, 6.37)
48 6.19 6.18 6.27

(6.07, 6.28) (6.17, 6.37)
60 6.27 6.19 6.24

(6.08, 6.30) (6.15, 6.34)
84 6.37 6.20 6.10

(6.09, 6.31) (6.00, 6.20)
120 6.53 6.21 5.44

(6.10, 6.32) (5.19, 5.66)
5 yr. - 3 mth. spread 0.72 0.83 0.48

(0.62, 1.06) (0.36, 0.61)
10 yr. - 3 mth. spread 0.98 0.85 -0.33

(0.63, 1.08) (-0.60, -0.07)

Note: Column 2 shows average bond yields in the US over the
sample period 1961–2007. Columns 3 and 4 show the median
model estimates of the nominal and real yield curves. 90%
Bayesian credible intervals in parentheses. The median coeffi-
cient of risk aversion is γ = 2.59 and the median discount rate
is 4ρ = 0.05.
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