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Abstract

Inßation expectations play an important role in macroeconomics, inßuencing the real
interest rate, actual inßation, as well as the transmission of monetary policy. In this
paper I estimate how expectations of inßation in the United States (taken from theSur-
vey of Professional Forecasters) respond to monetary policy shocks from 1992 to 2018
while accounting for the presence of information frictions. I Þrst use the unobserved
components model, which decomposes expected inßation at any forecast horizon into
expected inßation in the short and long run, to estimate the term structure of inßation
expectations. I Þnd that outdated information accounts for approximately 28% of in-
ßation forecasts. Information frictions are important on average but play an especially
large role during recessionary periods. I then show that long-run expectations decline
after a monetary policy contraction, and the e!ect is permanent. I also show that
monetary policy actions taken throughout the recession beginning in 2008 e!ectively
propped up long-run inßation expectations from 2009 to 2014.
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1 Introduction

Expectations play a foundational role in modern macroeconomics. Agents are forward look-

ing in virtually all models so that their actions, and hence model equilibria, depend on their

expectations of future events. Among expectations perhaps none has received greater in-

terest than inßation expectations, which play a role in determining the real interest rate,

through the Fisher equation, as well as actual inßation, through the New Keynesian Phillips

curve, two key variables for central bankers. The ability of the monetary authority to inßu-

ence inßation expectations is especially important when interest rates are at their e!ective

lower bound to avoid falling into a liquidity trap. In such a situation the monetary authority

may be able to put downward pressure on real interest rates if it is able to increase inßation

expectations through unconventional monetary policy operations such as forward guidance

and asset purchase programs. An understanding of how inßation expectations respond to

changes in monetary policy is hence an important question.

In models with rational expectations, expected inßation responds to monetary policy in a

manner consistent with actual inßation. In this scenario, knowledge of how actual inßation

responds to monetary policy implies knowledge of how expected inßation will respond to

the same policy. But many recent papers have documented that observable expectations

have properties inconsistent with full-information rational expectations and consistent with

models with information frictions. How these information frictions a!ect the response of

inßation expectations after changes to monetary policy is less well understood.

In this paper I estimate how US inßation expectations, taken from theSurvey of Profes-

sional Forecasters, respond to changes in monetary policy over the period 1992Ð2018, while

allowing for the presence of information frictions in the underlying survey data. The exer-

cise sheds light on the transmission of monetary policy through inßation expectations, the

quantitative importance of information frictions, and the interaction of the two. To do this

I estimate a term structure model of inßation expectations using the unobserved compo-

nents model, which provides a mapping from latent model variables to inßation forecasts at
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any horizon. This allows the common information in survey forecasts at all horizons to be

incorporated in my analysis in a consistent manner.

To account for information frictions, I allow observed expectations to depart from the

unobserved components model in a predictable manner, consistent with models where expec-

tations are slow to adjust to new information, as in the sticky information model proposed

by Mankiw and Reis (2002). I Þnd that outdated information accounts for 28% of inßation

forecasts. The quantitative importance of information frictions also appears to vary over the

business cycle, even though the model coe!cients are not time-varying; di"erences between

inßation expectations uncovered from models with and without information frictions are

especially large during recessionary periods compared with non-recessionary periods.

To estimate the response of the entire term structure of inßation expectations after a

monetary policy shock I use SVAR-IV methods proposed by Stock and Watson (2012) and

Mertens and Ravn (2013). Following Gertler and Karadi (2015) and Miranda-Agrippino and

Ricco (2017) I use the change in three-month federal funds futures contracts after mone-

tary policy announcements as an instrument for exogenous interest rate ßuctuations. I Þnd

that contractionary monetary policy decreases inßation expectations with a lag of several

years, consistent with the empirical evidence that actual inßation falls after contractionary

monetary policy shocks but with a lag of several years. This response can be explained by

a temporary increase in the short-run component of inßation expectation and a permanent

decrease in the long-run component of inßation expectations. For the Þrst several years after

a monetary policy shock these two opposite e"ects cancel each other out, so there is no e"ect

on expectations overall. But, in the long-run, the permanent e"ect dominates and expec-

tations decline. Historical decompositions show that the overall contribution of monetary

policy shocks to changes in inßation expectations is small for short-run expectations but

large for long-run expectations. In particular, I show that monetary policy shocks accounted

for a substantial amount of the variation in long-run inßation expectations from 2009 to

2014, a period when the Federal Reserve was constrained at the zero lower bound of nominal
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interest rates.

2 Research context

Empirical evidence about the behavior of expectations is important because models which

allow for departures from full-information rational expectations make di!erent predictions

about the e!ects of monetary policy. In this paper I consider the e!ects of information

constraints, which can be interpreted as arising from either sticky or noisy information. In

the sticky information model, proposed by Mankiw and Reis (2002), aggregate expectations

are slow to adjust to new information, which leads to a delayed response of actual inßation

to a monetary policy shock, consistent with the results of much of the empirical monetary

policy literature. Aggregate expectations are also slow to adjust to new information in the

noisy information model proposed by Woodford (2003). While the source of the information

frictions di!ers in the sticky and noisy information models, Coibion and Gorodnichenko

(2012) show that they share the common feature that outdated information plays a role in

aggregate expectations. For simplicity I interpret the presence of outdated information as

arising because of sticky information but acknowledge that alternative interpretations, such

as the noisy information model, are possible. I emphasize, however, that the focus of this

research is not the source of the information frictions but rather their size and implications.

From an empirical perspective, evidence against rational expectations has primarily fo-

cused on the forecasting properties of survey forecasts. Mehra (2002), Adam and Padula

(2011), and Patton and Timmermann (2012) show that survey forecasts are biased, ine"-

cient, and have serially correlated forecast errors, behavior that is inconsistent with rational

expectations. Coibion and Gorodnichenko (2012, 2015) show that these properties are con-

sistent with models featuring information frictions and can be large, even for professional

forecasters. Kiley (2007), D¬opkeet al. (2008), Coibion (2010) and Pfajfar and Roberts (2018)

estimate versions of the Phillips curve while allowing for information frictions and also Þnd
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departures from full-information rational expectations.

In this paper I estimate a term structure model of inßation expectations based on the un-

observed components model, while accounting for information frictions. The model provides

a snapshot of expected inßation over any given forecast horizon at any point in time as a

function of dynamic short- and long-run latent components. Analyzing the responses of these

factors after a monetary policy shock allows for a greater understanding of the responses of

short- and long-run inßation expectations. Since the model can be matched to inßation

expectations between any two forecast horizons it can accommodate both Þxed-horizon and

Þxed-window forecasts, following the approach used by Aruoba (2019). Once in its state

space representation the model parameters, including the information friction parameters,

can be estimated by maximum likelihood using numerical methods.

The unobserved components model is a natural candidate to estimate the term structure

of inßation expectations because it is known to match the properties of actual inßation quite

well. Stock and Watson (2007) show that the unobserved components model can be used

to decompose inßation into a permanent random-walk component and a transitory mean-

reverting component. Cogleyet al. (2010) use a version of this model to measure changes

in the persistence of the inßation gapÑthe di!erence between inßation and its long run

trendÑand Cogley and Sargent (2015) document changes in uncertainty of the permanent

and transitory components of inßation over a long time series.

Kozicki and Tinsley (2012) apply the unobserved components model to estimate the

term structure of inßation expectations, reasoning that, since the model Þts actual inßation

quite well, it should also Þt inßation expectations quite well. Crumpet al. (2018) extend

this model to estimate jointly the term structure of expectations of inßation, output, and

interest rates and Maruyamaet al. (2019) estimate a similar model for expectations in Japan.

Mertens (2016) uses the unobserved components model to measure the trend component of

inßation expectations and Nason and Smith (2020) extend the model to account for sticky

information in the survey forecasts.
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Other term structure models have also been Þt to expected inßation. Mehrotra and

Yetman (2014) estimate a term structure model where expectations converge from the current

level of inßation to long-run expectations. Aruoba (2019) and Kapetanioset al. (2016) have

instead applied the Nelson and Siegel (1987) model to inßation expectations. The NelsonÐ

Siegel model is a prominent model for the term structure of bond yields, popularized by

Diebold and Li (2006) and Dieboldet al. (2006). One drawback is that the model is not

consistent across time, as shown by Bj¬ork and Christensen (1999) and Filipovi«c (1999),

and hence the expectations uncovered from the model cannot coincide with full-information

rational expectations. This is an issue when trying to estimate the size of information

frictions which requires a model to stand in for full-information rational expectations, as

I show in detail in Section 3. Krippner (2006) shows how the Nelson-Siegel model can be

modiÞed to achieve consistency with restrictions on the dynamics of the latent factors but it

is not clear how this can be extended to allow the factors to jointly evolve with observable

macroeconomic variables, a necessary component to estimate the impact of monetary policy

on inßation expectations.

Once estimated, I use the model to analyze the impact of monetary policy on inßation

expectations. Because the model uses data at all available forecast horizons this provides

a complete analysis of the response of inßation expectations generally. The conventional

view of monetary policy is that higher interest rates lower inßation after a lag of several

years. The results of Romer and Romer (2004) and Gertler and Karadi (2015), for example,

support this view. If expectations are consistent with actual inßation, as they are in the

vast majority of theoretical models, they should respond in the same manner. Further, if

the central bank has a credible inßation target then long-run expectations should be stable

at that target and not respond to short-run policy moves. This provides a set of testable

predictions about the response of expectations after a monetary policy shock in both the

short and long run.

I also consider a contrarian view which propose the opposite: higher interest rates in-
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crease inßation expectations. One explanation for this behavior is the signalling channel of

monetary policy, where policy changes are informative public signals about the state of the

economy. Romer and Romer (2000) show that forecasts from the Federal ReserveÕs Green-

book outperform those of private forecasters and provide some evidence that forecasters

infer this information from policy moves to update their forecasts. Nakamura and Steinsson

(2018) Þnd that forecasts of output respond contemporaneously and positively to contrac-

tionary monetary policy shocks. This Þnding motivates their model in which policy changes

are informative about the true state of the economy through an information channel. Like-

wise, Jaroci«nski and Karadi (2020) show that, in many cases, stock prices move in the same

direction as interest rate surprisesÑthe opposite direction predicted by standard theoryÑa

Þnding they use to decompose monetary policy shocks into a standard component and an

information component.

Melosi (2016) shows that, in a model where Þrms have incomplete information similar

to the noisy information model, monetary policy shocks amount to a public signal, reveal-

ing information about the monetary authorityÕs information set. This leads to a signalling

channel where contractionary monetary policy shocks signal positive demand shocks so that

agents update their inßation expectations upwards. The signalling channel arises in this

model because information is dispersed: agentÕs receive private noisy signals about the true

state of the economy so that the public signal, the monetary policy change, provides addi-

tional information about the state of the economy. If agents have full information, the public

signal reveals nothing and expectations respond only to the anticipated policy e!ect. Hence,

accounting for information frictions while estimating the term structure of expectations is

important in order to properly test for evidence of such an information e!ect.

Falck et al. (forthcoming) provide empirical support for this theory by showing that con-

tractionary monetary policy shocks cause short-run inßation expectations to rise in periods

of high-disagreement among forecasters and fall in periods of low-disagreement. They in-

terpret this using the signalling channel of monetary policy with an extension of the Melosi

6



(2016) model, so that the precision of public signals, and hence disagreement among agents,

is time-varying. When disagreement among forecasters is high, public signals are highly

informative and hence the signalling channel is strong and moves expectations in the same

direction as interest rates. By contrast, when disagreement is low, public signals are not

as informative, so the dominant e!ect is the expected policy e!ect, which moves inßation

expectations in the opposite direction as interest rates.

Empirical evidence on the e!ects of monetary policy on inßation expectations is somewhat

mixed and papers tend to focus on either short- or long-run expectations. Many studies

of long-run expectations use inßation compensation, measured as the di!erence between

nominal and real bond yields, as a proxy for inßation expectations. Both Hanson and Stein

(2015) and Nakamura and Steinsson (2018) Þnd that long-run inßation compensation falls

after a monetary policy contraction, but the e!ect is only signiÞcant in the latter study.

G¬urkaynaket al. (2005a) Þnd that long-run inßation compensation for the United States

is responsive to news about a variety of macroeconomic variables as well as monetary policy.

G¬urkaynaket al. (2010) and G¬urkaynaket al. (2007) show that this e!ect does not extend to

countries with formal inßation targets which they interpret as evidence that inßation targets

are e!ective in stabilizing long-run inßation expectations. Beechey and Wright (2009) also

Þnd that long-run inßation compensation declines after a monetary policy tightening but

argue that this could instead represent a change to the inßation risk premium rather than

inßation expectations.

Distinguishing between the response of expected inßation and inßation risk is a general

problem with relying on inßation compensation derived from bond yields as a proxy for

inßation expectations, which I avoid by instead using survey data. An additional advantage

is that survey data is typically more informative about short-run expectations than Þnancial

data so that I can estimate the response of the entire term structure of inßation expectations.

Several studies estimate the responsiveness of survey data to changes in the macroeconomy

but these typically focus on either short- or long-run expectations. Leducet al. (2007) and
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Melosi (2016) show that short-run inßation expectations decline after a monetary tightening

without the long delay typically seen from actual inßation. Davis (2014) shows that short-

run expectations are less responsive to changes in actual inßation or the price of oil in

countries with formal inßation targets but do not consider monetary policy shocks. Finally,

Bauer (2015) shows that long-run expectations from surveys do respond to macroeconomic

news but do not consider the e!ects of monetary policy. To my knowledge the research

in this paper is the Þrst to estimate the response of the entire term structure of inßation

expectations to a monetary policy shock.

Finally, recent works by Claus and Nguyen (2019), Lamla and Vinogradov (2019), Lewis

et al. (2019), and Coibionet al. (2020) estimate the e!ects of monetary policy on household

expectations. Most of these papers focus in particular on the ability of unconventional

monetary policy to shift household expectations. Coibionet al. (2020), for example, provide

experimental evidence of a strong e!ect of forward guidance on household expectations.

Household expectations are of particular interest because of the direct connection to the

expectations driving theoretical macroeconomic models. But the term structure component

of this data is typically limited, often consisting only of average forecasts at a few forecast

horizons. By contrast, data from theSurvey of Professional Forecasterscontains a rich term

structure component, which makes it more appropriate for the application in this paper.

3 The unobserved components model

To estimate the e!ects of monetary policy on inßation expectations at all horizons I estimate

a term structure model of inßation expectations based on the unobserved components model,

which allows me to combine information across the term structure of inßation expectations

in a parsimonious way.

First proposed by Stock and Watson (2007), the unobserved components model is based

on the Beveridge and Nelson (1981) decomposition of inßation into permanent and transitory
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components. The model has been extended variously by Cogleyet al. (2010) and Cogley and

Sargent (2015) and applied to inßation expectations by Kozicki and Tinsley (2012), Crump

et al. (2018), Nason and Smith (2020), Mertens (2016), Chanet al. (2018), and Mertens and

Nason (2018).

When applied to expected inßation, the unobserved components model can be used to

represent the term structure of inßation expectations at any given point in time as a function

of dynamic latent factors, the parameters determining the dynamics of these factors, and the

forecast horizon. The model Þrst decomposes actual inßation into a slowly evolving long-run

trend component,! t ; short-run deviations from that trend, ÷" t ; and a transitory component,

v1,t :

" t = ! t + ÷" t + v1,t . (1)

The two persistent components,! t and ÷" t evolve as:

! t = ! t ! 1 + u!,t , (2)

÷" t = a÷" t! 1 + b#"
t ! 1 + u÷",t , (3)

where#t is a vector of observable macroeconomic variables to be described in greater detail

below. Under this speciÞcation, inßation can be decomposed into a permanent component,

! t , a temporary but persistent component, ÷" t , and a purely transitory component, v1,t .

Neither ! t nor ÷" t depend on lags of the other component but the error termsu!,t and u÷",t

may be correlated. I follow Mertens and Nason (2018) and include a transitory component

for inßation in equation (1) so that ! t and ÷" t can be interpreted as components common to

both actual and expected inßation. As I show below, once the dynamics of these variables

are known, the unobserved components model can be matched with inßation forecasts at

any horizon.

The restrictions that ! t follow a random walk and neither! t nor ÷" t have an intercept
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term follow from the interpretation of ! t as long-run inßation expectations. SpeciÞcally, I

interpret this component as:

Et " ! = ! t , (4)

which implies that changes in! t are not forecastable. Were this not the case then forecast-

ers would simply incorporate these adjustments into their current expectations of long-run

inßation and hence! t would not be consistent with long-run expected inßation. For the

same reason neither! t nor ÷" t have an intercept term. Suppose not and equations (2) and

(3) included intercept termsµ! and µ÷" . This would imply that long-run expectations are:

Et " ! = ! t + µ! + µ÷" , (5)

which is inconsistent with equation (4) and the interpretation of! t as long-run inßation

expectations unlessµ! = µ÷" = 0.

While the short-run component of expectations, ÷" t , does not depend on lags of! t , it

may depend on its own lag as well as lags of a set of control variables,#t . SpeciÞcally,#t

includesyt , the real-time vintage of the growth rate of real Gross Domestic Product (GDP);

Ftyt+4 , forecasts of real GDP growth four quarters ahead from theSurvey of Professional

Forecasters; and i t , the interest rate on one-year Treasury bills. The inclusion of forecasts

of real GDP growth allows for a forward-looking component of real activity, which should

help to identify both variation in the term structure of inßation expectations as well as the

central bankÕs monetary policy rule. I use the last available vintage of real GDP growth

before the scheduled due date for theSurvey of Professional Forecastersand calculate the

interest rate as the daily average between due dates.

Neither real GDP growth nor forecasts of real GDP growth depend on long-run inßation,

which can be thought of as imposing the condition that money is super-neutral in the long

run, at least in the context of the relatively low-inßation environment over the sample period
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of 1992Ð2018. However, because these variables evolve jointly with ÷! t , I impose no restrictions

on the response of real activity variables to short-run inßation dynamics.

This long-run neutrality restriction would not be sensible if applied to the nominal interest

rate. It would be hard to imagine, for example, the Federal Reserve allowing an increase in

long-run inßation expectations to go unchecked. Furthermore, the linearized Fisher equation

states that the nominal interest rate is equal to the sum of the real interest rate,r t , and

expected inßation over the period of the bond:

i t = r t +
1
4

4!

j =1

Et ! t+ j . (6)

According to the unobserved components model, expected inßation is the sum of expected

future values of"t and ÷! t so that the nominal interest rate can equivalently be decomposed:

i t = r t + "t +
1
4

4!

j =1

Et ÷! t+ j , (7)

which implies that the nominal interest rate and long-run inßation expectations are cointe-

grated. In order to ensure stability of the system given the unit root in"t , I impose this

cointegrating relationship between the interest rate and long-run inßation expectations and

include instead the latent stationary variable÷i t = i t ! "t in the vector of state variables. I

additionally de-mean these four state variables so that the vector of macroeconomic variables

#t can be written as:

#t =

"

#
#
#
#
$

yt ! µy

Ftyt+4 ! µF y

÷i t ! µi

%

&
&
&
&
'

. (8)

Now deÞne the vector of state variables as$t = [ "t , ÷! t , #t ] with dynamics given by the
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vector autoregressive process:

! t = B! t! 1 + ut , (9)

and with restrictions on B as described above to ensure stationarity of the system. With

the dynamics of the system known, forecasts of future inßation rates can be constructed by

iterating on equation (9). Let " = [1 1 0 ... 0] be a selection vector which selects and sums

the Þrst two elements of any conformable vector. Expected inßation at horizons can be

constructed as:

Et#t+ s = Et$t+ s + Et ÷#t+ s, (10)

= "B s! t . (11)

Since optimal forecasts of inßation at any horizons can be constructed from the dynamics

of ! t , this will be used to link the forecasting data across horizons and uncover the latent

factors, $t and ÷#t , from the common information in the panel structure of the forecasts and

actual inßation. GivenB, forecasts of inßation between any two horizons can be included as

a measurement equation in a state space model without any additional parameters needing

to be estimated. This not only o!ers considerable dimensionality reduction but also allows

for analysis of the entire term structure of expected inßation.

The Þrst measurement equation links the unobserved components model with actual

inßation. This was already presented as equation (1) but I repeat it here for completeness

and introduce the notationx to generally label measurement equations:

x1,t ! #t = $t + ÷#t + v1,t . (12)

The remaining measurement equations making up the state space model relate inßation

forecasts with the unobserved components model. Before I write these out explicitly I Þrst

12



introduce the forecasting data itself.

3.1 Forecast data

The inßation concept in this paper is seasonally-adjusted Consumer Price Index (CPI) inßa-

tion. Although Personal Consumption Expenditure (PCE) inßation is the Federal ReserveÕs

preferred inßation concept, survey measures of expected PCE inßation are available only

since 2007. However, the correlation between the two series is quite high at 0.92. Forecasts

of CPI inßation are available at a quarterly frequency from theSurvey of Professional Fore-

castersand I use the mean forecast as the measure of inßation expectations over the period

1992Ð2018. Forecasts at a Þxed forecast horizon are available for the current and next four

quarters ahead. Forecasts at further horizons are also available but they forecast a di!erent

inßation conceptÑaverage inßation over a given year or period of years, rather than the

quarterly inßation rateÑand Þx the forecast event rather than the forecast horizon. The

state space model can accommodate both types of forecasts but the Þxed-event forecasts will

require special treatment, as I show in detail below.

The next step is to link the unobserved components model with the survey forecasts,

which will make up most of the measurement equations in the state space model. Before

proceeding directly to this step I Þrst show how to account for information frictions in the

data.

3.2 Incorporating information frictions

The unobserved components model provides a framework to describe model-consistent fore-

casts of expected inßation. One issue with applying the model directly to the survey data,

however, is that survey forecasts do not correspond with full-information rational expecta-

tions. In particular, forecasters are slow to adjust to new information because of information

frictions, so that outdated information plays a signiÞcant role in expectations. Coibion and

Gorodnichenko (2012) show that when expectations are slow to adjust to new information
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expected inßation will be less responsive than actual inßation to monetary policy shocks.

Mankiw and Reis (2002) propose a model where information is sticky so that only a fraction

of agents receive new information in a given period. Those who receive new information use

it to make forecasts while those who do not receive new information continue to forecast

with out-of-date information.

I now demonstrate how the unobserved components model can be Þt to the survey fore-

casts while accounting for these information frictions. First, letFt ! t+ s1! t+ s2 denote forecasts

of average inßation between periodst + s1 and t + s2. The law of motion for forecasts of

average inßation betweent and t + s under sticky information is then:

Ft ! t ! t+ s = (1 ! " )Et ! t ! t+ s + "F t" 1! t ! t+ s, (13)

where " is the weight placed on outdated information. Forecasts are comprised of two

components under this speciÞcation: the full-information component,Et+ h! t+ h+ s and the

outdated information component,Ft+ h" 1! t+ h+ s. Notice that, when " = 0 the e!ects of

outdated information drop out and the forecasts are model consistent.

Now, if the unobserved components model is a good characterization of full-information

inßation expectations, then model predictions at horizons can be used to replaceEt ! t ! t+ s:

Ft ! t ! t+ s = (1 ! " )
1
s

s!

j =1

#Bj $t + "F t" 1! t ! t+ s. (14)

In the next subsection I show in detail how each of the forecasts I observe in the survey data

can be mapped to the unobserved components model when information frictions are present

using equation (14).

3.3 Fixed-horizon and Þxed-event forecasts

One challenge when working with forecasts from theSurvey of Professional Forecastersis

how to combine information across the term structure given the discrepancy between short-
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and long-run forecasts. SpeciÞcally, while short-run forecasts correspond with a Þxed fore-

cast horizonÑone-, two-, three-, or four-quarters aheadÑlonger-run forecasts are Þxed-event

forecasts where the forecasting period is a Þxed window, typically one or more calendar years.

For example, forecasts for average inßation in the next year refer to the next calendar year,

not necessarily average inßation over the next four quarters. As a result, the forecast window

rotates only once per year so that the forecast horizon depends on the quarter in which the

forecast is made.

Aruoba (2019) shows how the state space framework can be used to circumvent this

problem by splitting up each of the long-run forecasts into four variables, each of which

is observed only once per year but now with a common forecast horizon. This essentially

exchanges the rotating forecast horizon problem for a missing data problem, which can be

handled using the Kalman Þlter. In this section I show in detail how survey forecasts of

both types can be made consistent with the unobserved components model to form a set of

measurement equations in the state space model.

I begin with the Þxed horizon forecasts, denoted CPI-1, CPI-2, CPI-3, CPI-4, CPI-5,

and CPI-6, which correspond with the one-quarter backcast, the nowcast, and the one-, two-

, three-, and four-quarter ahead forecasts of the annualized quarterly inßation rate. I follow

the naming convention of the actual survey data here. Since the unobserved components

model corresponds with the underlying full-information rational expectations, correcting for

the presence of outdated information in the surveys requires two forecasts of inßation over

the same period taken at di!erent dates, as in equation (13). I do not use the backcast or

nowcast because some of actual inßation would be observed when the forecast is made but

the nowcast will be useful later. The Þrst of the quarterly forecasts is expected inßation in

the next quarter which, recalling the law of motion for inßation expectations is:

Ft ! t+1 = (1 ! " )Et ! t+1 + "F t! 1! t+1 . (15)
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As in the previous subsection, let! = [1 1 0 ... 0] be a selection matrix which selects and

sums forecasts of the two unobserved components of expected inßation. One-quarter-ahead

inßation expectations from the unobserved components model are then!B" t and long-run

expected inßation is by deÞnition#t . Relating this to the surveys gives:

x2,t ! CPI-3t = (1 " $)!B" t + $CPI-4t�1 + v2,t , (16)

which deÞnes the survey as a function of state variables, model parameters, predetermined

variables, and measurement error. Equation (16) is the Þrst measurement equation for the

survey forecasts. Proceeding in the same manner for the remaining forecasts yields a set

of measurement equations which, combined with the vector autoregression for the state

variables, will form the state space model.

The next survey, CPI-4, is the forecast of inßation two quarters into the future which,

after substituting forecasts from the unobserved components model for the expectations,

gives:

x3,t ! CPI-4t = (1 " $)!B 2" t + $CPI-5t�1 + v3,t . (17)

The same logic implies:

x4,t ! CPI-5t = (1 " $)!B 3" t + $CPI-6t�1 + v4,t , (18)

which maps the four quarterly forecasts to points along the expected inßation curve.

More distant forecasts from theSurvey of Professional Forecastersdo not correspond

with inßation at a single quarter, but rather the average annualized quarterly inßation rate

over a Þxed forecast window. The Þrst set of these are forecasts of annual inßation in

the current year, next year, and year after next, denoted as CPI-A, CPI-B, and CPI-C. I

emphasize that these forecasts are with respect to calendar years, not necessarily the next
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year starting in quarter t + 1. For example, both CPI-B2004:4 and CPI-B2004:3 are forecasts

of the average annualized quarterly inßation rate in 2005, although the forecasts are made

in two di!erent periods and, importantly, have di!erent forecast horizons. As a result, the

forecasting concept of the annual forecasts is distinct depending on the quarter in which

the forecast is made. Consistent with the notation above, forecasts of annual inßation over

the next calendar year made in the fourth quarter areFt ! t!t+4 whereas forecasts of annual

inßation over the next calendar year made in the third quarter areFt ! t+1 !t+5 .

Because of this feature of the data, I follow Aruoba (2019) and split these variables up

so that the forecasts made in each quarter are treated as di!erent variables, each of which

is observed only once per year. Denote these CPI-A-Q1, CPI-A-Q2, CPI-A-Q3, CPI-A-Q4,

and similarly for CPI-B and CPI-C. Mapping these to the unobserved components model as

before gives three measurement equations for the next-year forecasts:

x5,t ! CPI-B-Q4t = (1 " " )
1
4

4!

i =1

#B
i $t + " CPI-B-Q3t�1 + v5,t , (19)

x6,t ! CPI-B-Q3t = (1 " " )
1
4

5!

i =2

#B
i $t + " CPI-B-Q2t�1 + v6,t , (20)

x7,t ! CPI-B-Q2t = (1 " " )
1
4

6!

i =3

#B
i $t + " CPI-B-Q1t�1 + v7,t . (21)

In the same way, the year-after-next forecasts map to the unobserved components model

with the following three measurement equations:

x8,t ! CPI-C-Q4t = (1 " " )
1
4

8!

j =5

#B
j $t + " CPI-C-Q3t�1 + v8,t , (22)

x9,t ! CPI-C-Q3t = (1 " " )
1
4

9!

j =6

#B
j $t + " CPI-C-Q2t�1 + v9,t , (23)

x10,t ! CPI-C-Q2t = (1 " " )
1
4

10!

j =7

#B
j $t + " CPI-C-Q1t�1 + v10,t . (24)

The next-year and year-after-next forecasts can also be combined to yield an additional
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measurement equation:

CPI-B-Q1
t

= (1 � !)Et⇡t+3!t+7 + !CPI-C-Q4
t�1

, (25)

x11,t ⌘ CPI-B-Q1
t

= (1 � !)
1
4

7X

j=4

◆B
j
↵t + !CPI-C-Q4

t�1
+ v11,t. (26)

And Þnally, the Þrst quarter current-year forecasts can be combined with the next-year

forecasts. In this case, however, part of the forecast relates to inßation in the current period:

CPI-A-Q1
t

= (1 � !)
1
4

(Et⇡t�1!t + 3Et⇡t!t+3) + !CPI-B-Q4
t�1

, (27)

where the Þrst full-information expectation is of inßation in the current period. Since the

Survey of Professional Forecastersis due in the middle of the quarter the actual inßation

rate in that quarter will be partially observedÑinßation in the Þrst month of the quarter

would be known. Hence this is not a pure forecast. To account for this I make use of the

nowcast which, in the presence of information frictions takes the following form:

Ft⇡t = (1 � !)Et⇡t�1!t + !Ft�1⇡t. (28)

Rearrange this expression, we can substitute out (1�!)Et⇡t�1!t in equation (27) for obser-

vations from the survey data:

x12,t ⌘ CPI-A-Q1
t

=
3
4

(1 � !)
3X

j=1

◆B
j
↵t + !CPI-B-Q4

t�1
+

1
4

(CPI-2t � !CPI-3t�1) + v12,t.

(29)

Long term Þve- and ten-year-ahead inßation forecasts are also calendar based, with the

reference point being the fourth quarter of the previous year. Hence, the Þve-year-ahead

forecasts made in the Þrst quarter will include the nowcast of the current inßation rate,

the second quarter forecasts will include the nowcast and backcast of the previous quarterÕs
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inßation rate, and so on. An implication of this feature is that at the time the forecasts

are made in the second, third, and fourth quarters, some part of the forecasting object

is observable. To account for this I substitute real-time CPI inßation and the nowcast of

inßation from the Survey of Professional Forecastersfor these parts of the forecasts, in the

same manner as the previous measurement equation for expected inßation in the current

year.

Let CPI-5-Q1 and CPI-10-Q1 denote the Þve- and ten-year-ahead inßation forecasts made

in the Þrst quarter, with the names of forecasts made in the remaining quarters following

the same structure. Then:

x13,t ! CPI-5-Q2t = (1 " ! )
1
20

!

" t ! 1 +
18"

j =1

#Bj $t

#

+ ! CPI-5-Q1t! 1

+
1
20

(CPI-2t " ! CPI-3t! 1) + v13,t , (30)

x14,t ! CPI-5-Q3t = (1 " ! )
1
20

!

" t ! 2 + " t! 1 +
17"

j =1

#Bj $t

#

+ ! CPI-5-Q2t! 1

+
1
20

(CPI-2t " ! CPI-3t! 1) + v14,t , (31)

x15,t ! CPI-5-Q4t = (1 " ! )
1
20

!

" t ! 3 + " t! 2 + " t! 1 +
16"

j =1

#Bj $t

#

+ ! CPI-5-Q3t! 1

+
1
20

(CPI-2t " ! CPI-3t! 1) + v15,t , (32)

x16,t ! CPI-10-Q2t = (1 " ! )
1
40

!

" t ! 1 +
38"

j =1

#Bj $t

#

+ ! CPI-10-Q1t! 1

+
1
40

(CPI-2t " ! CPI-3t! 1) + v16,t , (33)

x17,t ! CPI-10-Q3t = (1 " ! )
1
40

!

" t ! 2 + " t! 1 +
37"

j =1

#Bj $t

#

+ ! CPI-10-Q2t! 1

+
1
40

(CPI-2t " ! CPI-3t! 1) + v17,t , (34)

x18,t ! CPI-10-Q4t = (1 " ! )
1
40

!

" t ! 3 + " t! 2 + " t! 1 +
36"

j =1

#Bj $t

#

+ ! CPI-10-Q3t! 1

+
1
40

(CPI-2t " ! CPI-3t! 1) + v18,t . (35)
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3.4 State space model

The remaining measurement equations correspond with the observable macroeconomic data

included in the state vector! t : the real-time growth rate of real Gross Domestic Product,

forecasts of Gross Domestic Product four quarters ahead, and the interest rate on one-year

treasury bills. These enter as deviations from their long-run means, taking the form:

x19,t ! yt = µy + !yt , (36)

x20,t ! Ftyt+4 = µF y + "Ftyt+4 , (37)

x21,t ! i t = µi + "t + ÷i t , (38)

where÷denotes a de-meaned variable.

Let xt = [ x1,t , ..., x21,t ]! be the N -dimensional vector of observables outlined above and

wt a vector of predetermined variables consisting of lags of real-time inßation and survey

forecasts. The state space model is:

xt = µ + !( B, # )! t + "( #)wt + vt , vt " N (0, # v) (39)

! t = B! t" 1 + ut , ut " N (0, # u), (40)

where (39) are the measurement equations, derived in the previous subsection, and (40)

governs the dynamics of the state variables. The structure of !(B, # ) is determined entirely

by B, #, and the forecast horizon of expected inßation in the corresponding row ofxt . The

structure of "( #) is determined entirely by# since lagged forecasts will only enter the law

of motion for expectations when information is sticky. Joint estimation of the unobserved

components and model parameters is feasible by making use of the modelÕs state space

representation. In the next section I describe this estimation procedure.
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3.5 Estimation procedure

With the measurement equations speciÞed above I can write the unobserved components

model in its state space representation, given by equations (39) and (40), and estimate by

maximum likelihood. I follow common practice and assume that the errors in the measure-

ment equations are independent across equations. To reduce the number of parameters to

estimate, I also assume the errors in the measurement equations of the inßation forecasts all

have the same variance,! 2
F . Hence ! v is a diagonal matrix, ! v = diag(! 2

! , ! 2
F , ..., ! 2

F , 0, 0, 0).

The state variables follow a VAR(1) process and the covariance matrix !u is unrestricted,

allowing for correlation in the error terms across the state variables.

The state space model is non-linear in the parameters, arising from both the information

frictions as well as the consistency restrictions. However, for a given set of parameters,

the model is linear in the state variables so that the likelihood function can be evaluated

with the Kalman Þlter via the prediction error decomposition. As demonstrated by Aruoba

et al. (2009), the Kalman Þlter easily deals with the many missing observations, which arise

in the measurement equations of the calendar-year forecasts in theSurvey of Professional

Forecasters, described above. If all variables were observed in a given period then the Kalman

Þlter could proceed as follows. Let "t denote the information set at periodt and at|t =

E[" t |" t ], at|t ! 1 = E[" t |" t ! 1], Pt|t = V ar(" t |" t ), and Pt|t ! 1 = V ar(" t |" t ! 1). Then,

at|t = at|t ! 1 + Pt|t ! 1# "! ! 1
t vt , (41)

Pt|t = Pt|t ! 1 ! Pt|t ! 1# "! ! 1
t #P"

t |t ! 1, (42)

! t = # Pt|t ! 1# " + $! w$ " + ! v, (43)

vt = yt ! µ ! #at|t ! 1 ! $ wt , (44)

at+1 |t = Bat|t , (45)

Pt+1 |t = BPt|tB " + ! u, (46)

where ! w is the covariance matrix for the variables inwt .
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When some observations are missing in a particular period, deÞneN !
t < N as the number

of observations that are not missing in periodt and Wt an N !
t ! N selection matrix with rows

equal to the corresponding row of the identity matrixI N if the element of xt is observed.

Hence, the rank ofWt is N !
t , the number of observed elements ofxt in period t. Also deÞne,

! ! = Wt ! , (47)

v!
t = Wtvt , (48)

" !
v = Wt" vW "

t , (49)

x!
t = Wtxt , (50)

and the Kalman Þlter can proceed as before, with these starred variables and parameter

matrices in place of their counterparts. The forecast errors from the Kalman Þlter can then

be used to evaluate the log-likelihood function via the prediction error decomposition:

L t = "
1
2

!
N !

t log 2! + log |" !
t | + v! !

t " !# 1
t v!

t

"
. (51)

The Kalman Þlter uses information up to periodt to evaluate the likelihood and produce

estimates of the latent state variables. When we are interested in the latent unobserved

components themselves, however, I use the Kalman smoother as described by Durbin and

Koopman (2001) to produce estimates of the factors based on all sample data. SpeciÞcally,

22



let:

K t = BPt|t ! 1! "" ! 1
t , (52)

Rt = B ! K t ! , (53)

dt! 1 = !" ! 1
t vt + R"

tdt , (54)

Mt! 1 = ! "" ! 1
t ! + R"

tM tRt , (55)

at|T = at|t ! 1 + Pt|t ! 1dt! 1, (56)

Pt|T = Pt|t ! 1 ! Pt|t ! 1M t! 1Pt|t ! 1, (57)

and initial values dT = 0 and MT = 0. Iterating on these equations backwards fromT ! 1

gives optimal estimates of the state variables based on all sample data, which I will use when

analyzing the unobserved components of expected inßation themselves. Note that because

the likelihood function is based on the forecasts produced by the Kalman Þlter, use of the

Kalman smoother has no impact on the estimated model parameters.

I maximize the log-likelihood function, the sum over allt of equation (51), using non-

linear optimization methods and numerical derivatives, which I compute as the change in

the likelihood induced by a small change in parameter values. SpeciÞcally, let! denote

the k-dimensional column vector of model parameters. The score is then ak " T matrix

calculated via two-sided numerical derivatives such that the rowi column t element is:

Si,t =
L t (! + q) ! L t (! ! q)

2qi
, whereqj =

!
"#

"$

#, for i = j

0, otherwise
(58)

and # is the square root of machine precision. For a given parameter vector,! (l ) , I calculate

the parameter vector at the (l + 1) th iteration with NewtonÕs method:

! (l+1) = ! (l ) ! " (l )H (l ) f (l ) , (59)
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where ! (l ) is the step size,H (l) is an approximation of the Hessian andf (l ) is the negative

of the gradient vector, which has typical elementf (l )
i = !

! T
t=1 S(l)

i,t . I use the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) procedure to approximate the Hessian matrix of second

derivatives. Let ! " (l+1) = " (l+1) ! " (l ) and ! f (l+1) = f (l+1) ! f (l ) . Then the approximate

Hessian at the next iteration is updated as:

H (l+1) = H (l) !
H (l ) ! " (l+1) ! " (l+1) !

H (l )

! " (l+1) ! H (l ) ! " (l+1)
+

! f (l+1) ! f (l+1) !

! f (l+1) ! ! " (l+1)
. (60)

I initialize by setting H (0) = 106I k , so that equation (59) begins with a steepest descent step.

As the number of iterations increases, more curvature information is incorporated into the

approximate Hessian which speeds up convergence.

The BFGS updating formula is valid only when the condition !" (l+1) !
! f (l+1) > 0 holds.

When this condition is violatedÑwhich occurs only rarelyÑI instead update with a damped

BFGS formula proposed by Powell (1978) which takes as the change in the gradient:

! f (l+1) ! = #! f (l+1) + (1 ! #)H (l) ! " (l+1) , (61)

# = 0.8
! " (l+1) !

H (l ) ! " (l+1)

! " (l+1) ! H (l ) ! " (l+1) ! ! " (l+1) ! ! f (l+1)
, (62)

with ! f (l+1) ! taking the place of ! f (l+1) in equation (60).

To choose the step size,! (l ) , I begin with an initial value of unity and then proceed with

a line search by bisection, taking the Þrst candidate to satisfy the Wolfe conditions using

the algorithm proposed by Nocedal and Wright (2006). In order to ensure that the covari-

ance matrices are always positive semi-deÞnite, I reparameterize them by Þrst taking their

Cholesky decomposition and then setting the main diagonal equal to its natural logarithm

before stacking in" . Derivatives are then taken with respect to these new reparameterized

variables. Of course, when evaluating the log-likelihood function this procedure is done in

reverse so that there is no e"ect on the log-likelihood function itself, but this ensures that
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the optimization algorithm will never take a step resulting in a negative variance estimate.

4 Results

4.1 Estimation results and model evaluation

The model provides evidence of information frictions: I estimate ö! = 0.2823 with a standard

error, calculated as the diagonal element of the inverse Hessian matrix, of 0.0270. Under

the interpretation of the sticky information model, this indicates that approximately 28%

of professional forecasters are operating with outdated information sets and that forecasters

update their information sets every 1
1! ö! = 1.39 quarters, on average. This is very close to

the Þndings of Mertens and Nason (2018) who estimate a value of approximately 0.3 for

GDP deßator inßation, despite di!erences in sample period, inßation concept, as well as

forecast horizon. It also matches closely the estimates of the sticky information parameter

in forecasts of CPI inßation reported by Coibion and Gorodnichenko (2015), who propose a

new regression approach to test for the presence of information rigidities. On the other hand,

it is somewhat smaller than the estimate of 0.438 reported by Nason and Smith (2020), which

may be explained by their inclusion of the 1980s in their sample, which they are able to do

because they focus only on short-run expectations. Interestingly,! is larger than most of the

estimates reported by D¬opkeet al. (2008) and Andrade and Le Bihan (2013) who provide

estimates of the Sticky Information parameter for European countries using theEuropean

Survey of Professional Forecasters.

To further demonstrate statistical evidence supporting the presence of information fric-

tions in the survey forecasts, I calculate a likelihood ratio test, comparing the model with

and without sticky information. The test statistic is:

2

!
T"

t=1

L (ö", ö#t ) !
T"

t=1

L (ø", ø#t )

#

" $2(1), (63)
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where
! T

t=1 L t (ö!, ö" t ) is the likelihood function evaluated at the estimated model parameters

ö! and state variables ö" t , and ø! and ø" t denote the restricted estimates. The tests statistic is

67.75 with a p-value of essentially zero, indicating strong evidence of information frictions

in the survey data.

Table 1 shows parameter estimates for the matrixB in equations (40), which determines

the dynamics of the state variables. Standard errors, in parentheses, are calculated as the

diagonal elements of the inverse Hessian matrix. The elements ofB associated with#t are

excluded since#t neither depends upon nor inßuences the other variables. Both actual and

forecasts of GDP enter signiÞcantly in equations for the interest rate and short-run inßation

expectations. In each case, the variables are more responsive to a unit increase in forecasts

than actual GDP, indicating the importance of including a forward-looking real activity

component to explain the dynamics of expected inßation and the central bankÕs monetary

policy rule.

Figure 1 shows estimates of the two unobserved components,#t and ÷$t , extracted with

the Kalman smoother, for the benchmark model with sticky information (solid lines) as well

as the restricted model with no information frictions (dashed lines). The shaded areas are

the 68% and 90% conÞdence intervals associated with the estimated latent factors from the

benchmark model, calculated using Monte Carlo methods as proposed by Hamilton (1986).

The benchmark long-run component,#t , has a mean of 2.84%, somewhat larger than the

average inßation rate between 1992 to 2018 (2.25%). The discrepancy can be explained by

two e!ects. First, from 1992 to 2000 long-run inßation expectations were slowly adjusting

downward from the higher inßation period in the 1980s. Second, inßation remained below

long-run expectations during the recovery from the Þnancial crisis and ensuing recession in

2008. Between these two episodes, from 2000 to 2009, the level factor has a mean of 2.69%

comparable with 2.54% for actual inßation. While the most prominent feature of the long-

run component is the large downward adjustment over the Þrst eight years of the sample,

long-run inßation expectations also demonstrate non-trivial variation over the remaining
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sample period. This includes two relatively large increases over a short period of time: Þrst

in 2000 and again in 2007 just as the Federal Reserve was lowering interest rates in response

to the Þnancial crisis.

The short-run component of expected inßation, ÷! t , is much more variable than the long-

run component and is typically below zero, which indicates that short-run inßation expec-

tations were typically below long-run inßation expectations over the sample period. This

is especially true around 2008 as the economy fell into recession but also extends through

the recovery period until the end of the sample as inßation remained surprisingly low during

the economic recovery. Figure 1 indicates that this low inßationary period was interpreted

as temporary by forecasters. Hence the short-run component is negative while long-run

expectations ßuctuate around their long-run mean, although there is some indication that

long-run inßation expectations are beginning to adjust downwards to a new lower-inßation

environment.

Comparing the solid and dashed lines in Figure 1 gives an indication of when and by

how much information frictions matter. In most cases, the restricted estimates fall within

the conÞdence intervals of the estimated unrestricted components. However, there are some

periods where the latent factors are further apart than others. The long-run component, for

example, shows that sticky information plays a larger role in the second half of the sample.

The e!ect is typically signiÞcant at the 68% level but holds for the Þnal ten years of the

sample, which appears to suggest that information frictions have not become less important

over time.

Figure 2 shows the term structure of inßation expectations from the unobserved compo-

nents model at two dates, with and without information frictions. In the second quarter of

2005, a period of relative economic calm, expected inßation from the restricted and unre-

stricted models looks very similar. The economy is relatively stable so that new information

does not signiÞcantly alter existing forecasts. However, as the economy is entering a severe

recession in the fourth quarter of 2008, the two models provide very di!erent estimates of
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expected inßation over the short run. The benchmark unrestricted model with sticky infor-

mation shows expected inßation is below average in the short run and a full two percentage

points below the model with no frictions.

The Þgure demonstrates that, when economic conditions are very volatile, old information

can be very di!erent from new information so that forecasts based on the two information

sets can be quite di!erent. To further demonstrate this point, deÞne:

⇣s,t = |◆ öBs ö↵t ! ◆ øBs ø↵t |, (64)

as the absolute di!erence between the predictions of the unrestricted model with sticky

information and restricted model without. If this di!erence is on average large, that indicates

that the information frictions matter not just statistically but economically. I estimate the

following regressions:

⇣s,t = as + bs�t + errors,t , (65)

where�t is a dummy variable taking the value of one in a recession, according to the NBER

recession dates, and zero otherwise. Then,as has the interpretation as the average di!erence

between expected inßation at horizons uncovered from the restricted and unrestricted mod-

els in normal times andas + bs the average di!erence between the two models in recessionary

periods.

Figure 3 shows estimates ofas and bs in equation (65) fors = 0 , ..., 40 where⇣s,t is the ab-

solute di!erence between the predictions of the unrestricted model and the restricted model

with no information frictions (ie. ! = 0). Solid line segments indicate the estimated coe"-

cient is statistically signiÞcant at the 10% level and dashed line segments indicate otherwise.

The top panel shows the average e!ect of information frictions on estimates of inßation

expectations by forecast horizon. The largest e!ect is for the contemporaneous expecta-

tions, which di!er by approximately 26 basis points, on average. The e!ect is smaller for

the remaining forecast horizons, typically between 5 and 10 basis points, but is statistically
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signiÞcant at all horizons.

The bottom panel of Figure 3 shows that the di!erence between the restricted and unre-

stricted models is larger in recessionary periods. Again the largest e!ects occur at the short

end of the term structure. Taken together, the estimates in Figure 3 indicate that there is a

di!erence of approximately 66 basis points between the models with and without information

frictions in recessionary periods for expectations of inßation in the current period, a sizable

value given that average inßation over the sample period is 2.25%. As the forecast horizon

increases, the extra e!ect of information frictions in recessionary periods declines quickly,

and is not statistically signiÞcant in several cases.

4.2 Impulse response functions

IdentiÞcation of the e!ects of monetary policy is a challenging problem because monetary

policy both inßuences and actively responds to current and anticipated economic conditions.

For this reason contemporaneous adjustments to the nominal interest rate are endogenous

with respect the the remaining variables in! t and standard OLS estimates of the contem-

poraneous interest rate e!ect are not reliable.

Consider, however, a variable"t,i which represents the exogenous component of changes

to the interest rate, a monetary policy shock. Were"t,i observed then the e!ects of monetary

policy shocks on! t could be estimated consistently and dynamic e!ects traced out using

the estimate ofB already obtained. Unfortunately,"t,i is not directly observable. However,

we do know that these shocks are related to the error termsut in the state equations (40)

which, although they have no economic interpretation beyond forecast errors, contain all

unpredictable variation in the state equations. Some of this variation will be due to the

monetary policy shocks so that we can express the forecast errors as:

ut = " i "t,i + #t , (66)
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where ! i gives the contemporaneous e"ect of the monetary policy shocks on each variable

in the system and! t is an error term which is a linear combination of the remaining shocks

driving the system, "t,j for j != i . The impulse response functions of the state variablesh

quarters after a monetary policy shock can then be written as:

#h =
$%t+ h

$"!
t,i

= JB hJ !! i , (67)

whereJ = [ I m 0m" m á á á0m" m] is a selection matrix, andm the number of state variables.

Although "t,i is itself unobservable, Mertens and Ravn (2013) and Stock and Watson

(2012) show that the e"ect of this shock can be identiÞed given a suitable instrumentzt

satisfying the following relevance and exclusion conditions:

E[zt "t,i ] != 0, (68)

E[zt "t,j ] = 0 for j != i. (69)

If these conditions are satisÞed, then !i can be estimated consistently from the regression:

öut = ! i öut,i + &t , (70)

by instrumenting for öut,i with zt .

Following Gertler and Karadi (2015), I construct an instrument from the change in federal

funds futures rates in a 30-minute window around monetary policy announcements, using

an updated set of the Federal Open Market Committee meeting dates from G¬urkaynaket al.

(2005b). To get the Þnal instrument, I follow Miranda-Agrippino and Ricco (2017) and use

the residuals from a regression of changes in the futures contracts on four of their own lags,

and forecasts and forecast revisions from the Federal ReserveÕs Greenbook. I include the

nowcast, backcast, and forecasts of CPI inßation and real GDP in the next three quarters,

the nowcast of the unemployment rate and revisions of the nowcast, backcast, and forecasts
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of inßation, real GDP, and the unemployment rate in the next two quarters. This is to

control for information frictions as well as di!erences in the information sets of policymakers

and Þnancial market participants.

Valid inference requires that the instrumental variable is su"ciently correlated with the

endogenous variable, typically indicated with a largeF -statistic from the Þrst-stage regres-

sion. The Þrst-stage regressions haveF -statistics of 9.82 and 9.24 for the restricted and

unrestricted models, respectively. Stocket al. (2002) observe that whether or not an in-

strument should be considered weak depends on the tolerance for departures from the usual

standards of inference. For example, the requirement that a 5% hypothesis test rejects no

more than 15% of the time requires a Þrst-stageF -statistic of 8.96. TheF -statistics from

both Þrst-stage regressions exceed this threshold, so weak instruments do not appear to be

of concern.

I calculate asymptotic standard errors for the impulse response functions via the delta

method. Let ! = vec(B) and assume that:

!
T

!

"
#

ö! " !

ö# i " # i

$

%
&

d"# N

!

"
#

'

(
)

0

0

*

+
, ,

'

(
)

$ ! 0

0 $! i

*

+
,

$

%
& . (71)

The delta method says that for a vector of parametersb satisfying:

!
T(öb" b) d"# N (0, $ b), (72)

and a continuous di!erentiable functiong(á), the transformation of the variables follows the

distribution:
!

T(g(öb) " g(b)) d"# N
-

0,
"g
"b!

$ b
"g
"b

!.
. (73)

Using this result, the impulse response functions follow the asymptotic distribution:

!
T( ö#h " #h) d"# N (0, Ah$ ! A!

h + øAh$ ! r
øA!

h), (74)
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where,

Ah =

!
"#

"$

0 for h = 0,

(! !
i ! I m )

%& h" 1
j =0 J (B !)h" 1" j ! JB j J !

'
for h " 1,

(75)

and

øAh = JB hJ ! # h. (76)

This result follows from L¬utkepohl (1990) but the calculations di"er slightly since I am

only interested in the single impulse response vector, !i . I show them here for completeness.

First, notice that the additive nature of the covariance matrix in equation (74) follows from

the block diagonal structure of equation (71). Then, to derive the matricesAh and øAh is

just a matter of matrix di"erentiation.

First, notice that when h = 0, ! 0 = JJ !! i , so that:

A0 =
"! 0

"# !
= 0. (77)

For h > 1:

"! h

"# !
=

" (JB hJ !! i )
"# !

, (78)

=
" vec(JB hJ !! i )

"# !
, (79)

= (! !
i J ! J )

" vec(B h)
"# !

, (80)

= (! !
i ! I m )

(
h" 1)

j =0

J (B !)h" 1" j ! JB j J !

*

, (81)

where I omit the steps between the Þnal two lines because these are standard and follow
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directly from L¬utkepohl (1990). Now, for øAh:

!" h

! ! !
i

=
! (JB hJ !! i )

! ! !
i

, (82)

= JB hJ !, (83)

which gives the result. I estimate the covariance matrix of autoregressive coe"cients, #!

from the inverse of the Hessian matrix evaluated at the solution parameters. I use a sandwich

estimator for the covariance matrix #! i . Let Pz = z!(zz!)" 1z be the matrix projecting onto

the space spanned byz, the instrumental variable. Then, the IV estimator for equation (70)

can be written:

ö! i = (öui Pz öui ! I m)" 1(öui Pz ! I m)vec(öu). (84)

The sandwich covariance matrix estimator, which allows for correlation across the error terms

in the equations (70), is:

# ! i = (öui Pz öui ! I m)" 1(öui Pz ! I m)(I T ! # " )(Pz öui ! I m)(öui Pz öui ! I m)" 1, (85)

where ö# " = 1
T ö#ö#! and ö# = öu " ö! i Pz öui .

Figure 4 shows impulse response functions of the short- and long-run components after a

monetary policy shock normalized to raise the detrended one-year treasury bill rate by 100

basis points. The maximum impulse response horizon is 40 quarters, which coincides with the

longest available inßation forecast in theSurvey of Professional Forecasters. The solid black

lines correspond with the responses of the components from the benchmark model with sticky

information. The light and dark shaded areas are the associated 68% and 90% asymptotic

conÞdence intervals calculated as described above. For comparison, the dashed lines show

the response of the components from the restricted model with no sticky information.

Long-run inßation expectations decrease signiÞcantly upon impact after a contractionary
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monetary policy shock and, because the process follows a random walk, the e!ect is per-

manent. This is a somewhat surprising result, and runs counter to the conventional view

of monetary policy. If the monetary authority has a credible long-run inßation target, then

we would expect long-run inßation expectations to be stable at this target and hence not

respond to a temporary policy change. Here, long-run inßation expectations decline by 14

basis points. This result is also not sensitive to the exclusion of sticky information.

The short-run component does not respond contemporaneously to a monetary policy

shock. In the periods following the policy change, the short-run component Þrst increases

and then declines as the policy e!ect wears o! over the course of several years. The e!ect is

temporary because, unlike the long-run component, ÷! t is stationary. The positive response

of the short-run component is somewhat smaller in the model without information frictions,

and occasionally the di!erences are statistically signiÞcant, but the overall shape and timing

of the responses are similar.

Because of the additive structure of the unobserved components model, the response of

expected inßation is simply the sum of the responses of the short- and long-run component,

which is shown in the top panel of Figure 5. Over the Þrst several years, the positive

response of the short-run component essentially cancels out the negative response of the

long-run component, so that overall there is no signiÞcant response of inßation expectations.

However, because the response of the long-run component is permanent, eventually it will

dominate as the e!ect of the stationary short-run component fades away.

In the benchmark model there are several horizons for which the response of expected

inßation is positiveÑbetween two and ten quarters after the policy is implementedÑbut the

e!ect is never signiÞcant at the 10% level. In the restricted model, the response of expected

inßation is never positive. In the short-run, then, the response of expectations appears

consistent with the typical response of actual inßation: there is no signiÞcant response for

several years, after which there is a signiÞcant negative response.

One reason to expect that expectations may not respond in the same manner as actual
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inßation is the information channel of monetary policy, whereby policy changes communicate

the Federal ReserveÕs superior information to forecasters so that expectations adjust in the

same direction as the policy change in the short-run. For example, forecasters may interpret

an unanticipated monetary policy tightening as an indication that their expectations of

inßation were too low and hence revise them upwards over the short term. Figure 5 shows

that this is not the case, so that monetary policy decisions do not appear to communicate

information about current or short-term inßation rates. This is consistent with Nakamura

and Steinsson (2018), who Þnd no response of inßation expectations to a monetary policy

shock in the short run and a negative response in the long-run, and suggests a strong response

of real interest rates to a monetary policy shock.

An implication of the Þnding that long-run inßation expectations decline permanently

after a monetary policy shock is that future interest rates will eventually decline by the

same amount. In other words, higher interest rates today cause lower interest rates in the

future through an inßation expectations channel. This follows directly from the cointegrat-

ing relationship between interest rates and long-run inßation expectations. The timing of

this depends on the persistence of the response of the stationary component of the nominal

interest rate. The bottom panel of Figure 5 shows the response of the interest rate after

a monetary policy shock. Interest rates remain positive for several years after the contrac-

tionary monetary policy shock. Eventually the response becomes insigniÞcantly di!erent

from zero, but does not turn negative even ten years after the policy change because of the

high degree of persistence in the stationary component of nominal interest rates.

4.3 Historical and variance decompositions

Given the underlying monetary policy shocks,! t,i , an additional object of interest is the

historical contribution of speciÞc exogenous monetary policy changes to ßuctuations of the

two components of expected inßation. This gives an indication of periods where the inßuence

of monetary policy on expectations was particularly big or small. As demonstrated by Stock
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and Watson (2018), the monetary policy shocks can be uncovered as:

! t,i =
! !

i "
" 1
u

! !
i " " 1

u ! i
ut . (86)

Given the monetary policy shocks, the cumulative contribution of the estimated monetary

policy shocks to changes in the state variables over the sample period is given by:

# " t =
#!

h=0

JB hJ !! i ! t " h,i . (87)

Figure 6 shows the cumulative e$ect of monetary policy shocks on the two unobserved

components over the sample period. Notice that, because the long-run component follows

a random walk, the e$ect of the monetary policy shocks never wears o$. As a result, the

cumulative e$ect of monetary policy shocks at any given date is simply the sum of the esti-

mated monetary policy shocks since the start of the sample, scaled by the contemporaneous

response of the long-run component to monetary policy shocks, estimated to be -0.14. So,

the historical decomposition of the long-run component demonstrates both the cumulative

response of long-run inßation expectations to monetary policy shocks over the sample as well

as the (scaled) cumulative sum of the monetary policy shocks themselves.

The cumulative change in long-run inßation expectations that can be explained by mon-

etary policy shocks is initially small and positive, but quickly falls below zero as forecasters

begin to adjust to the reality of lower inßation, consistent with Figure 1. The historical

decomposition indicates that monetary policy actions undertaken at the time can only par-

tially explain this e$ect. In the four years between the beginning of 1993 and the end of

1996, monetary policy decreased inßation expectations by approximately 40 basis points.

Long-run inßation expectations continued to decline through the remainder of the 1990s,

but this does not appear to be because of monetary policy actions, which were essentially

neutral through that time in the benchmark model.

The remainder of the sample includes two periods of consecutive monetary policy easings
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which put upward pressure on long-run expectations. The Þrst begins in 2000 as the Federal

Reserve responded to worsening economic conditions after the dot-com stock market crash.

These policy actions directly increased long-run inßation expectations by approximately 60

basis points. The second period of easings coincides with the Þnancial crisis beginning in

2007. First, there are three consecutive easings in the Þnal two quarters of 2007 and the

Þrst quarter of 2008. Following that, monetary policy was initially contractionary during

the Þrst asset purchase program (QE1) which likely reßects that markets anticipated a more

aggressive program than what the Federal Reserve ultimately implemented.

In the fourth quarter of 2008 the Federal Reserve set the target range for the federal

funds rate to between 0 and 1/4 percent, e!ectively hitting the zero lower bound, where

it remained until December 2015. Hence, monetary policy shocks throughout this period

can be attributed to either forward guidance or asset purchase programs undertaken by

the Federal Reserve. Forward guidance consisted of communicating information about both

future monetary policy decisionsÑpromising to keep interest rates low beyond the next

meeting dateÑas well as specifying economic preconditions that would need to be met until

the Federal Reserve would consider lifting the policy rate o! its lower bound. SpeciÞcally, the

Federal Reserve frequently indicated that interest rates would remain at their Òexceptionally

low levelÓ while employment remained below its maximum levelÑoften explicitly stated as

an unemployment rate above 6.5%Ñmedium-term inßation was projected to be no greater

than 2.5%, and long-run inßation expectations remained well anchored.

Of the 28 quarters making up the zero lower bound period, 23 have negative monetary

policy shocks, indicating that, despite the constraint on short-term interest rates, the Federal

Reserve was able to inßuence longer term interest rates through unconventional monetary

policies. The absolute mean value of monetary policy shocks over this period is 22 basis

points compared with 28.9 basis points over the full sample, indicating that while there may

have been some limitations to the e!ectiveness of monetary policy when constrained at the

zero lower bound, overall these limitations were small. Figure 6 shows that by the end of
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2014 the cumulative e!ect of monetary policy actions over the previous Þve years contributed

to increase long-run expectations by 60 basis points. Again, because short-run policy rates

were constrained at the zero lower bound during this period, this e!ect can be attributed

to unconventional monetary policy operations. This Þnding is consistent with Bonevaet al.

(2016) who Þnd that unconventional monetary policy actions taken by the Bank of England

had a signiÞcant e!ect on inßation expectations of Þrms in the United Kingdom.

Following the termination of the Þnal asset purchase program there has been downward

pressure on long-run inßation expectations. Between 2015 and 2017 monetary policy was

essentially neutralÑmonetary policy shocks are all very close to zero during this timeÑand

the contribution of earlier expansionary policy on expectations begins to level out. Finally,

in late 2017 and 2018 there are two consecutive contractionary monetary policy shocks as

the Federal Reserve looked to normalize interest rates, which appear to have contributed to

the trend of lower long-run inßation expectations. But, this cannot completely explain the

downward trend in long-run inßation expectations in the Þnal Þve quarters of the sample;

long-run inßation expectations have decline by 20 basis points, only one-quarter of which

can be explained by monetary policy.

By contrast, in the restricted model which does not account for sticky information, the

contribution of monetary policy to changes in long-run inßation expectations is notably

smaller. This is true over the full sample period, over which monetary policy is essen-

tially neutral, but is particularly noticeable over the zero lower bound period. This can

be explained by two e!ects. First, as demonstrated by the impulse response functions, the

response of long-run expectations to monetary policy is somewhat smaller in the restricted

model. While this di!erence is small and not statistically signiÞcant, the cumulative e!ect

can be large. Second, the two models have di!erent estimated monetary policy shocks. For

example, the cumulative sum of monetary policy shocks over the zero lower bound period

di!er by 108 basis points, with the unrestricted model Þnding that monetary policy was

substantially more accommodating over this period than the restricted model.
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The bottom panel of Figure 6 shows the historical decomposition of the short-run compo-

nent of inßation expectations. Over much of the sample this mirrors the response of long-run

expectations, consistent with earlier Þndings that the responses of these two components to

monetary policy o!set eachother in the short run. However, because the short-run com-

ponent is stationary, the e!ect of previous monetary policy shocks becomes smaller as the

shocks become more distant.

Figure 7 shows the forecast error variance decomposition for the unobserved components

of the benchmark model, which indicates the fraction of the variance of the forecast errors

at horizon H , ö! t+ H ! öB H ö! t , that can be explained by monetary policy shocks. For a given

variable, I calculate these as:

" !
i

! " H
h=0

#
JB hJ !

$!
ej e!

j JB hJ !
%

" i

(" !
i # " 1

u " i ) e!
j

! " H
h=0 (JB hJ !)! # uJB hJ !

%
ej

, (88)

where j is the position of the variable in the vector! t , and ej is a selection vector with a

one in positionj and zeroes elsewhere. This gives an indication of how important monetary

policy shocks are to explain the dynamics of expected inßation overall.

In the benchmark model, nearly 40% of the variation in long-run expectations can be

explained by monetary policy shocks. Once again, because this component follows a random

walk, the e!ect is the same at all horizons. By contrast, much less of the variation in

the short-run component can be explained by monetary policy shocks. At short horizons,

monetary policy explains virtually none of the variation in the short-run component, and even

at longer horizons only 5% of the variation can be attributed to monetary policy. We also

see that, consistent with the historical decompositions, the model with information frictions

Þnds that monetary policy explains much more of the variation of inßation expectations than

the restricted model.
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5 Conclusion

This paper estimates the impact of monetary policy on the term structure of inßation expec-

tations. To do this I use an extension of the unobserved components model which accounts

for information frictions and includes additional macroeconomic variables. I then use the

model to identify the e!ects of monetary policy on expectations using SVAR-IV methods. I

Þnd signiÞcant evidence of information frictions. SpeciÞcally, 28% of inßation expectations

consist of outdated information. I also show that the e!ects of sticky information on ex-

pectations matter more during recessions, especially around the recession beginning in 2008,

and at short forecast horizons.

I then show that the long-run component of inßation expectations declines after a mone-

tary policy tightening and that, because this component follows a random walk, the e!ect is

permanent. The short-run component moves in the opposite direction so that, over the Þrst

several years there is no response of expected inßation. But, because the short-run compo-

nent is stationary, the long-run e!ect eventually dominates and expected inßation falls. This

result holds whether or not information frictions are accounted for in the model, although

the benchmark model with information frictions does Þnd somewhat larger e!ects.

I also Þnd that a much larger share of the variation in long-run expectations can be

explained by monetary policy actions than for short-run expectations. SpeciÞcally, monetary

policy put sustained upward pressure on long-run expectations from 2009 to 2014, helping

to prop up inßation expectations through the Þnancial crisis and economic recovery. Since

then long-run expectations have demonstrated a downward trajectory, some of which can be

attributed to increases in the policy rate in 2018, but most of which appears due to other

factors.
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A Tables and Figures

Table 1: Estimates of transition matrix B

÷! t! 1 ÷yt! 1
!Ft! 1yt+3

÷i t ! 1

÷! t 0.3765 ! 0.0585 ! 0.1073 0.1205
(0.0435) (0.0264) (0.0347) (0.0188)

÷yt 0.1953 0.2882 0.0110 0.0822
(0.1361) (0.0706) (0.0938) (0.0612)

!Ftyt+4 ! 0.0478 0.0049 0.8085 0.0115
(0.0326) (0.0176) (0.0485) (0.0125)

÷i t ! 0.0089 0.0616 ! 0.1272 0.9439
(0.0357) (0.0193) (0.0492) (0.0170)

Note: Parameter estimates for the matrix B in the state equations (40).
Rows correspond with the dependent variable and columns explanatory
variables. Standard errors in parentheses are the diagonal elements of the
inverse Hessian matrix. Excluded are the Þrst row and Þrst column of B
since ! t follows a random walk and is restricted so that its lags a!ect no
other state variables.
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Figure 1: Estimated unobserved components of the state space model
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Note: Estimates of the unobserved long- and short-run components from the state space model. The black solid line shows the
estimated unobserved components from the model allowing for sticky information. The dark and light shaded areas are the
associated 68% and 90% asymptotic conÞdence intervals. For comparison, the dashed lines show the unobserved components
for models with no sticky information ( ! = 0). I estimate the factors with the Kalman smoother and construct the conÞdence
intervals by Monte Carlo simulation as proposed by Hamilton (1986) based on 5000 draws of the model parameters.
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Figure 2: Expected inßation at two dates
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Note: Expected inßation from the unobserved components model at two dates. The black solid lines show expected inßation
from the unobserved components model with sticky information. For comparison, the dashed lines show expected inßation
from the models with no sticky information ( ! = 0).
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Figure 3: Estimates from regression:! s,t = as + bs" t + error s,t
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Note: Estimated coe!cients from regression (65), where ! t is and indicator variable equal to one in an NBER recession period
and zero otherwise and "s,t is the absolute di"erence between the predictions of the unrestricted model and the restricted
model with no information frictions (ie. # = $ = 0). Solid lines indicate the estimated coe!cient is signiÞcant at the 10% level
and dashed lines otherwise.
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Figure 4: Response of unobserved components to a monetary policy shock
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Note: Estimated impulse response functions of the short- and long-run components of the unobserved components model after

a monetary policy shock normalized to raise the detrended one-year treasury bill rate by 100 basis points. The black solid line

shows the response of the unobserved components from the model allowing for sticky information, where ! was estimated to

be 0.2823. The dark and light shaded areas are the associated 68% and 90% asymptotic confidence intervals. For comparison,

the dashed line shows the response of the unobserved components from the model with no information frictions (! = 0).

Detailed calculations of the impulse response functions and confidence intervals are outlined in Section 4.2.
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Figure 5: Response of expected inßation and the interest rate
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Note: Estimated impulse response functions of expected inßation and the interest rate from the unobserved components
model after a monetary policy shock normalized to raise the detrended one-year treasury bill rate by 100 basis points. The
black solid line shows the response of the variables from the model allowing for sticky information, where ! was estimated to
be 0.2823. The dark and light shaded areas are the associated 68% and 90% asymptotic conÞdence intervals. For comparison,
the dashed line shows the response of the variables from the model with no information frictions ( ! = 0). Detailed
calculations of the impulse response functions and conÞdence intervals are outlined in Section 4.2.
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Figure 6: Historical decomposition of unobserved components
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Note: The black solid line shows the cumulative impact of monetary policy shocks on the unobserved components from the
model allowing for sticky information, where ! was estimated to be 0 .2823. For comparison, the dashed line shows the
cumulative impact of monetary policy shocks on the unobserved components from the model with no information frictions
(! = 0). The shaded regions correspond with the Federal ReserveÕs asset purchase programs. The Þrst of these (QE1) runs
from the fourth quarter of 2008 until the Þrst quarter of 2010. The second (QE2) runs from the fourth quarter of 2010 until
the second quarter of 2011. The third of these (QE3) runs from the third quarter of 2012 until the fourth quarter of 2013.
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Figure 7: Forecast error variance decomposition
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Note: Percentage of variation in the forecast errors of the unobserved components from the state space model due to monetary
policy shocks. The black solid line shows the results from the model allowing for sticky information, where ! was estimated to
be 0.2823. For comparison, the dashed line shows the results from the model with no information frictions ( ! = 0).
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