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Abstract

I incorporate social networks into a search and matching model,
allowing for congestion effects. The model predicts that the presence
of network externalities increases the volatility of unemployment and
other variables. I demonstrate analytically that aggregate matching
functions exhibit decreasing returns to scale under certain conditions,
that unemployment and matching rates have a larger response to pro-
ductivity shocks, and that labour market tightness adjusts more slowly
to its steady-state. Numerical simulations demonstrate that network
effects can generate increases in the volatility of unemployment and
matching rates, as well as increases in the autocorrelation of vacan-
cies.
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1 Introduction

The use of social networks is pervasive in the matching of workers and firms.
Petrongolo and Pissarides (2001) declare, “The matching function summa-
rizes a trading technology between agents who place advertisements, read
newspapers and magazines, go to employment agencies, and mobilize local
networks1 that eventually bring them together into productive matches.”
Nonetheless, there are few attempts to explicitly incorporate local networks
into standard labour search models2. This paper models social networks in
the labour market and thereby provides microfoundations for the matching
function. This gives insights into several stylized facts.

First, search models of the labour market do a poor job of explaining the
short-run volatility of unemployment (and other variables) in the post-war
era. In fact, observed unemployment rates are an order of magnitude more
volatile than a benchmark search model predicts.

Second, vacancy rates observed over the post-war era exhibit more per-
sistence than search models predict. In particular, the observed quarterly
autocorrelation of vacancy rates is larger than predicted.

I develop a model of unemployment and social networks to analyze the
above facts. Unemployed workers utilize local networks to search for job
openings. The resulting matching function has different properties than is
often assumed in the literature. My model predicts that if the network
structure is fixed then the equilibrium unemployment rates and matching
rates have a larger response (in absolute value) to productivity shocks than
in baseline search models. Vacancies also exhibit more sluggish transition
dynamics.

When examining unemployment volatility, the results rely on variables
being in steady-state, and are qualitative in nature. To check the robust-
ness of the analytical results several numerical simulations are provided. I
show that the standard deviations of several labour market variables can
be increased with the inclusion of network effects. Vacancies exhibit higher
autocorrelation. I conclude that network effects alone can essentially match
observed unemployment volatility. However, I find that doing so produces a
counterfactual unemployment-vacancy relationship, which suggests a bound
on the empirical importance of network effects.

The model presented here allows for congestion effects, which occur
when unemployed workers compete for jobs found though mutual (employed)

1Emphasis my own.
2There are a few exceptions discussed in the literature review section.
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u v v/u p
Std. Dev. 0.190 0.202 0.382 0.020
Auto Correlation 0.936 0.940 0.941 0.878
u 1 -0.894 -0.971 -0.408
v - 1 0.975 0.364
v/u - - 1 0.396
p - - - 1

Table 1: U.S. Labour Market Statistics, 1951-2003 (Source: Shimer, 2005)

friends. Despite this layer of complexity, a matching function can still be
derived. The matching function satisfies properties similar to those in the lit-
erature, though not identical. In particular, difficulty arises when assessing
returns to scale of the matching function. The matching function only satis-
fies decreasing returns to scale when the unemployment rate is increased in
“just the right way, because the distribution of unemployment is important.

In solving for an equilibrium, my approach relies on utilizing a mean-
field approximation. The idea is the following: while the distribution of
unemployment matters for individual matching rates, it has little impact
on aggregate matching rates (on average). A consequence of this approach,
combined with congestion effects, is that the aggregate number of social
links in the network does not affect equilibrium unemployment, vacancies,
or wages. However, the network effects still matter and congestion amplifies
their impact of volatility.

The paper is organized as follows. Section 2 presents the relevant stylized
facts and literature. Section 3 describes the environment and derives a
micro-foundation for a network-augmented matching function. Section 4
presents the model with fixed networks and analytical results based on a
mean-field approximation. Section 5 presents calibration results. Section
6 concludes. Appendix 1 contains proofs, Appendix 2 contains the general
mean-field analysis, and Appendix 3 provide an example to demonstrate the
accuracy of the mean-field analysis.

2 Evidence and Literature

2.1 Social Networks and Employment Transitions

There are several studies that document the use of social networks in the
labour market. In a study of 2553 Quebec government workers, Langois
(2007) finds that 42.7% of workers found their current job through a contact.
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Erickson and Yancey (1980) finds that 57.7% of workers found their current
position through a strong or weak tie. Granovetter (1983) provides a detailed
survey, and argues that weak ties (acquaintances) are the primary sources
of job information. Jackson (2008) provides another survey and finds that
the percentage of workers who found their job through a personal contact is
23.5% in the lowest industries and 73.8% in the highest industries.

There is a large literature that supports the notion that social networks
improve labour market outcomes. Laschever (2009) uses data on World
War I draftees and the 1930 U.S. census to identify the impact of social
networks on employment likelihood and finds that an additional employed
peer increases employment likelihood by 0.8 percent. Beaman (2012) looks
at the reallocation of refugees and finds that “tenured” members of the
social network improve outcomes and members that are new arrivals harm
employment outcomes.

Khan and Lehrer (2012) use data from a field market experiment in
Cape Breton, Canada and find that although the Community Employment
Innovation Project tends to increase an individual’s weak ties, aggregate
employment outcomes do not improve. However, those with more links
tend to do better than those with fewer links. This result is consistent with
our equilibrium; the mean-field approximation, combined with congestion,
means that the aggregate number of links do not matter.

2.2 Unemployment and Vacancy Dynamics

There are several labour market variables that will be analyzed. The un-
employment rate is the fraction of unemployed workers in the labour force,
denoted u. The vacancy rate is the number of vacancies as a fraction of
the labour force, denoted v. The labour market tightness is the ratio of
vacancies to unemployed workers, or v

u . The number of matches per period
per worker is denoted m. Finally, p is the level of worker productivity.

There is a large body of literature on the shortcomings of search models.
Table 1 shows some basic properties of U.S. labour market data from 1951-
2005.3 of unemployment (0.19), and the autocorrelation of vacancies (0.94).
Shimer (2005) develops a stochastic version of Pissarides (2000), calibrates
the model to U.S. data, and finds that the model departs from U.S. data
in important ways. In particular, predicted unemployment volatility is too
low, and predicted vacancies have low (quarterly) autocorrelation compared
to U.S. data. Andolfatto (1996) embeds search frictions in a real business

3Standard deviations are of logged variables taken from detrended data using the HP
filter with smoothing parameter 105.
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Std. Dev. Autocorrelation u v v/u p
m 0.118 0.908 -0.949 0.897 0.948 0.396

Table 2: U.S. Job Finding Rate, 1951-2003 (Source: Shimer, 2005)

cycle model and finds that volatilities in U.S. data are larger than the model
can account for. Costain and Reiter (2007) investigate a search model with
stochastic unemployment benefits and find a fundamental tradeoff between
unemployment volatility and the impact of unemployment benefits on un-
employment.

Cardullo (2010) provides a survey of the attempts to model unemploy-
ment volatility and vacancy creation in a manner that overcomes the Shimer
(2005) critique. Recalibration (Hagedorn and Manovskii, 2005) and rigid
wages (Hall, 2005; Pissarides, 2010) fail to satisfactorily match U.S. data.
Barnichon (2012) proposes a model with endogenous productivity. Several
other microfoundations have been proposed, each with varying degrees of
success (see Cardullo, 2010). In the same survey, several explanations of
vacancy persistence are presented.

The work presented here belongs in the microfoundation classification. I
propose a mechanism (social networks) that leads to matching rate volatility
and persistence, which drives volatility and persistence in unemployment
and vacancies.

Another statistic that is difficult to replicate is the job finding rate m.
Table 2 describes the job finding rate during 1951-2003 in the U.S. Similar to
unemployment, matching rates are more volatile in the data than standard
search models predict. Several studies find matching rates to be procycli-
cal; the probability of finding a job, given the vacancy-unemployment ratio,
varies positively with the business cycle. Sedlacek (2010) finds that match
efficiency is procyclical and explains 26-35% of job finding rate variation.

2.3 Search Models with Network Effects

Social networks have been incorporated into models of the labour market,
and provided explanations for several stylized facts. First, several authors
explore negative duration dependence. Calvo-Armengol and Jackson (2004)
look at static social networks and find that employment statuses are cor-
related across time and path-connected individuals. Bramoulle and Saint
Paul (2010) take the argument further by allowing networks to evolve over
time. If social ties are created at a higher rate between workers of the same
employment status then the model produces duration dependence.
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Some work has been done on matching functions with a network compo-
nent. Fontaine (2007) uses an urn-ball framework with a series of complete
networks4. Calvo-Armengol and Zenou (2005) uses an urn-ball matching
function with regular random networks to discuss congestion in search. Gale-
nianos (2014) utilizes a matching function in an environment with new firms
and expanding firms to discuss procyclical matching efficiency. In every case
the matching function exhibits decreasing returns to scale in unemployment
and vacancies.

My model has both similarities and differences to Fontaine (2007) and
Calvo-Armengol and Zenou (2005). The papers are similar to this one in that
the resulting matching functions exhibit similar properties. Furthermore,
both papers employ an urn-ball matching foundation. My paper does not
restrict the network topology to complete networks or random networks. To
overcome the complexity I use a mean-field approximation5, which can be
thought of as restricting the distribution of unemployment.

There are similarities and differences between my model and Galenianos
(2014) as well. The resulting matching functions have similar properties.
However, Galenianos (2014) abstracts from the details of the network, which
is problematic if most agents have a small number of friends relative to the
entire population. Furthermore, the foundation is not based on an urn-ball
approach6, and augments the standard Cobb-Douglas matching function
directly. Furthermore, my model incorporates congestion effects and does
not impose large neighbourhoods.

There is a more recent literature involving multiple equilibria (Tumen,
2011; Merlino, 2014; Eeckhout and Lindenlaub, 2015), which suggests that
labour market variables can have larger volatility due to jumping between
equiibria. The model presented here does not exhibit such multiple equi-
libria. Furthermore, Galeotti and Merlino (2014) and Schmutte (2015) deal
with endogenous contact networks, whereas the model presented here takes
networks as fixed.

3 Networks and Matching

Here I examine networks with fixed links to analyze short-run changes in

4A complete network is a network in which all nodes are connected. Fontaine (2007)
has finite groups in which agents are connected to everyone in the same group and no one
from another group.

5I discuss the approach in Section 4 and Appendix 2.
6The approach of Galenianos (2014) has firms being born, or expanding and dividing.

A firm that expands accepts applications from the current employee’s contacts.
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A(e)

B(u)

C(u)

Figure 1: An example with three workers in a social network, two of which
are unemployed.

unemployment, vacancies, and matching rates. First, elementary examples
and definitions related to network analysis are provided. Second, I out-
line the modelling methodology. In particular, urn-ball matching and the
telephone-line queuing process are discussed.

3.1 Networks in the Labour Market

Consider the following scenario. An unemployed agent has dE employed
friends and is filling out applications. The agent engages in random search
by applying directly to firms. The agent also engages in network search by
having employed friends fill out applications on his behalf.

If µR random search applications are filled per period and each employed
friend fills out µN applications per period, total applications from the worker
per period are µR + µNd

E . Thus, the number of applications, and conse-
quently the rate at which an unemployed worker receives job offers, depends
on a property of the network.

The following example illustrates the interaction. Figure 1 depicts a
society. Agents B and C are unemployed. However, agent B has access to
an employed friend. Thus, there is a total of µR + µN applications from B
and a total of µR from C per period.

To abstract from the problem that the distribution of firm size and va-
cancies over firms matter, it is assumed that all vacancies are individual
firms and that employed agents randomly communicate with these firms.
The details will be described when discussing the nature of vacancies.

Now suppose that employed agents can only apply for a total fixed
amount of jobs, µN . In this case, there is competition for jobs. For ex-
ample, if B was employed and A was unemployed then A and C would be
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competing for B’s search effort. We call this phenomenon congestion. In
particular, a worker sends applications at rate µR + µN d̂

E where d̂E is a
term that incorporates congestion.

To formulate d̂E precisely we need some definitions. Let (L, T ) be a
network, where L is the labour force and T is a set of ties or relationships.
Assume that network is fixed over time. A typical element of L is i and
a typical element of T is (i, j).7 The set L can be partitioned into sets U
and E, which are the unemployed and employed workers, respectively. This
induces a partition on the set T :

TUU = {(i, j) ∈ T |i, j ∈ U}

TEE = {(i, j) ∈ T |i, j ∈ E}

TUE = {(i, j) ∈ T |i ∈ U, j ∈ E}

Notice that TUE = TEU ⊂ E × U , TUU ⊂ U2, and TEE ⊂ E2

We will use lowercase (capital) letters to denote variables associated with
unemployed (employed) workers. The set of nodes j such that (i, j) ∈ T is
referred to as i’s neighbourhood, and is denoted ni or Ni. The size of i’s
neighbourhood is called i’s degree, and is denoted di or Di.

A worker’s set of friends of employment status S ∈ {E,U} is their S-
neighbourhood, denoted nSi or NS

i . The E-degree is denoted dEi or DE
i .

Similarly one can define nUi , NU
i , dUi , and DU

i .
The aggregate properties of the network can be described by the degree

distribution, denoted f : N → [0, 1], which gives the proportion of workers
with degree d. Similarly, the S-degree distribution, denoted fS : R+ → [0, 1],
described the proportion of agents with S-degree dS .8

When describing a neighbouring node we will need more information
than employment status. For instance, an employed friend is more valuable
if he has fewer unemployed friends. It will be necessary to consider the
number of k-friends a node i has as di(k), where k is the number of employed
friends they have. Similarly, we will define dEi (k) as the number of employed
friends with k employed friends that i has.

With these definitions in hand one can define d̂Ei . Assuming agents
treat each unemployed friend equally, the rate at which an employed friend

7There is no distinction between (i, j) and (j, i). This is referred to as an undirected
network.

8One can also describe the network structure with an adjacency matrix, A, with typical
element aij = 1 if (i, j) ∈ T and 0 otherwise.
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j applies on behalf of an unemployed friend is µN
1
DUj

. We can write the rate

at which i hands out applications as

d̂Ei = µR + µN
∑
j∈nEi

1

DU
j

Before moving on, it may be useful to refer to the degree set χ ≡
{(f(d), d)d∈Z+}. Furthermore, we can refer to the S-degree set defined as
χS ≡ {(fS(d), dS)dS∈R+

}.

3.2 Urn-Ball Matching

A useful approach to describing the total number of matches in a given
period is with a matching function. Normally, matches are exogenously
given as a function of the total number of searchers on both sides of the
market, in this case m(u, v). Furthermore, it is standard to assume that the
function has several desirable properties, such as constant returns to scale.

There is a large literature that derives the matching function from first
principles. One common approach is referred to as the urn-ball method. I
utilize the urn-ball method to provide foundations for the matching function.

Consider a set of urns, V , and a set of agents U . Each agent possesses
µR > 0 balls and places each ball in a particular urn with probability 1

|V | .
Thus, agents pick the urn in which to drop a ball randomly with replacement.

Now suppose that each urn belongs to a different firm. Once every ball is
placed in some urn the firm draws a ball from its urn at random. Some firms
receive no applications and thus draw zero balls. Therefore, a firm draws a
ball at random conditional on its urn containing at least one ball. If a firm
draws a ball belonging to worker i then the worker gets the job. In the case
of worker i getting several balls drawn he chooses the job at random.

The above environment describes a common urn-ball process. Our pro-
cess is slightly different. Each employed agent also places balls in urns. An
employed agent samples an urn with replacement µN times for each of his
employed friends. The following definition allows us to discuss matching.

Definition 1 (Matches)

(i) The matching function gives the number of matches for unemployed
workers per worker as a function of the unemployment rate (u), vacancy
rate (v), and period length (∆t), and is denoted by m(u, v,∆t).
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(ii) The k -matching function gives the number of matches for unemployed
workers d̂Ei = k as a function of unemployment, vacancies, and period
length, and is denoted by m(u, v,∆t, k).

(iii) The matching rate is the number of matches per worker per unit time,

and is denoted m(u,v,∆t)
∆t .

(iv) The k-matching rate is the number of matches per worker with d̂Ei = k

per unit time, and is denoted m(u,v,∆t,k)
∆t .

I will often suppress notation by having m(u, v,∆t, k) ≡ m(∆t, k) and

lim∆t→0
m(u,v,∆t)

∆t ≡ m(u, v). Furthermore define

mu(u, v) ≡ m(u, v)

u

mu(u, v, k) ≡ m(u, v, k)

u(k)

mv(u, v) ≡ m(u, v)

v

The following lemma is useful. It provides a matching function with net-
work effects in a continuous time environment and follows from a well-known

result discussed in Petrongolo and Pissarides (2001). Let
¯̂
dE ≡

∫
i∈U d̂

E
i di

u .

Lemma 1

Suppose that |V |, |U | → +∞ where |V ||U | = θ < +∞.

If:

(i) Each unemployed agent searches randomly with intensity µR,

(ii) Each employed agent searches with intensity µN on behalf of each un-
employed friend, and

(iii) When an unemployed agent sends out an application there is a proba-
bility 1− ξ that the application is destroyed,

then when ∆t→ 0 the aggregate matching rate is

m(u, v) = (µRξ + µN
¯̂
dE)u
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The assumption (iii) adds uncertainty to the application process. The
reason for the assumption will become clear in the next section. The un-
certainty is only applied to the random search process (as opposed to the
network search process). The justification is that unemployed agents send
applications to a firm not knowing whether a vacancy is available. In con-
trast, employed agents know whether the firm is ready to hire. Our results
do not depend on ξ applying to the unemployed searchers only.

The matching function has several desirable properties. First, it is linear
in u. As is evident in Petrongolo and Pissarides (2001), linearity is a stan-
dard property of urn-ball matching functions in continuous time. Another

desirable property is the linearity in
¯̂
dE .

3.3 Telephone Line Queuing Process

There are well-established shortcomings with the urn-ball matching func-
tion. In continuous time the function does not depend on the number of
vacancies.9 Here I follow Stephens (2007) and use a telephone-line queuing
process to endogenize ξ.

To illustrate the idea suppose that vacancies come in two types: pro-
cessing, waiting. Processing vacancies are those vacancies that have been
created but are unready to be filled. The justification for this is that time
and effort is involved in between the decision to create a vacancy and the
interview process. Waiting vacancies are those vacancies that are ready to
be filled. Let Vw ⊂ V be the set of waiting vacancies and vw = |Vw|

|L| .
Random search occurs according to a telephone-line queuing process.

Workers call a firm (uniform) randomly. If the firm has a processing vacancy
it does not pick up the telephone. If the firm has a waiting vacancy it picks
up the phone and a match is created. Thus, the probability that a phone call
reaches a waiting vacancy is vw

v . The matching function can be rewritten as

(µR
vw
v + µN

¯̂
dE)u.

Network search has an added benefit. Namely, employed workers know
that a vacancy is waiting. Thus, all network applications reach a waiting
vacancy10.

To pin down vw
v one must discuss the determinants of vw. If processing

vacancies become waiting vacancies at rate µv then the inflow of waiting va-

9It is possible to include vacancies but then the function fails to satisfy m(0, v) =
m(u, 0) = 0.

10As mentioned earlier, the results do not rely on the assumption. The difference to

Proposition 1 is a matching function of (µR + µN
¯̂
dE)ξu.
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cancies is µv(v−vw). Furthermore, vacancies are being filled at the matching
rate mu(u, v). Therefore, waiting vacancies evolve according to

v̇w = µV (v − vw)− µRu
vw
v
− µN ¯̂

dEu (1)

the following proposition states the properties of the matching function when
the those of low degree tend to be unemployed. Let u(d) be the unemploy-
ment rate for those with degree d.

Proposition 1 (Steady-State Matching Function)

Suppose that v̇w = 0, µN > 0, and f(d) > 0 for some d > 0.

(i) The steady state matching function is:

µV v

µR + µV θ

(
µR + µN

∫
i∈U

∑
j∈nEi

1/DU
j di

|U |

)

(ii) Suppose the unemployment rate is increased from u to γu ≡ u′. If u(d)
u =

u(d)′

u′ and U ⊂ U ′, then the matching function m(u, v) exhibits decreasing
returns to scale in (u, v).

(iii) m(u, v) is strictly increasing in
¯̂
dE and v.

(iv) for large enough mu(u,v)
µNu

, m(u, v) is increasing in u.

The result characterizes the matching function. Part (i) gives its functional
form. Part (ii) demonstrates that the matching function exhibits decreasing
returns to scale, but only under certain restrictions on the distribution of
unemployment. There are more workers searching, each with less intensity,
which is a standard result in the literature. However, this result underlines
the importance of the exact manner in which unemployment increases. One
way to think of this is by swapping the employment status of i ∈ U and
j ∈ E. Standard search model predict the same number of matches. In this
model, matches may increase or decrease.

Part (iii) states that the number of matches increases with v and
¯̂
dE .

Finally, part (iv) says that the unemployment rate always increases matches
at low unemployment rates or if network effects are small. However, it is
possible for unemployment to decrease the number of matches at high levels

11



of unemployment with strong network effects. Properties (ii) and (iv), and
decreasing returns to scale are common to the literature11.

Both random and network search intensities are taken as exogenous
here, whereas Stephens (2007) has endogenous search intensity. Allowing
endogenous random search intensity leads to a different function form for
the steady-state matching function, and raises a few issues. However, the
properties of the matching function important for unemployment fluctua-
tions are unaltered12.

4 Model with a Fixed Network

A shortcoming of the previous section is highlighted in Proposition 1 part
(ii): the stock of unemployment does not give enough information to solve
the model. Here I present a search model and provide a notion of steady-
state network effects.

Before moving on let λ be the rate at which workers become unem-
ployed, called the separation rate. The unemployment rate for workers with
k employed friends evolves as follows

u̇(d̂E) = λ(1− u(d̂E))− u(d̂E)mu(d̂E) (2)

Average unemployment evolves according to the average of the above
equation, and is the equation of interest.

The steady-state matching function of the previous section, µV v(µR+µN d̄
E)

(µR+µV θ)
,

is taken to be fixed and non-varying. That is, v̇w = 0 for all t. While the
main results do not rely on this, it allows for a clearer description of the
impact of network effects on the standard search model.

4.1 Mean-Field Approximation

The goal of the model is to analyze the labour market dynamics. The
dynamics of the model presented thus far can get very complicated. For

11Galenianos (2013) provides a matching function with the above properties when work-
ers have a continuum of friends. Calvo-Armengol and Zenou (2005), with the exception
of point (ii), derives the results with random regular networks.

12An earlier version of the paper contained in my thesis found that when networks and
search intensity are complementary (ie. job searchers put effort into pestering friends),
search costs are close to linear, and there is heterogeneity in E-degrees then search effort
becomes a lot less pro-cyclical as the majority of workers are crowded out by the most
connected.
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instance, the evolution of S-degrees are stochastic as workers lose and gain
jobs randomly.13 I call the model of the previous section the true model.

To overcome these issues, I use the method employed by Bramoulle and
Saint Paul (2010) and apply an approximation model called a mean-field ap-
proximation.14 Let the mean-field approximation be in continuous time and
allow dE to take on any value in R+. The mean field approximation (i) im-
poses the same distribution of employment over neighbours for all workers,
(ii) has the aggregate distribution of employment evolve deterministically,
and (iii) has individual distributions be consistent with the aggregate distri-
bution. Another way to think of (i) is as having a representative agent for
each d, because each agent with degree d has the same E-degree.

The rest of the paper utilizes the following assumption.

Assumption 1 (Regular Networks)

Networks are regular: di = Dj = d > 0 for all i ∈ U and j ∈ E.

The assumption places a restriction on the network topology. While the
mean-field approach does not rely on this assumption, it simplifies the analy-
sis and simulations significantly. Appendix 2 presents the general mean-field
equations.

Assumption 1, combined with (i) of the mean-field approximation, allows

us to simplify our matching rate. In particular, d̂Ei = dE

DU
for all i ∈ L. In

continuous time, m(u, v, dE , DU ) is the matching rate and λ is the separation
rate. The following equations describe the mean-field approximation.

ḋE = mu(u, v, dE , DU )(d− dE)− λdE (3)

ḋU = −mu(u, v, dE , DU )dU + λ(d− dU ) (4)

ḊE = mu(u, v, dE , DU )(D −DE)− λDE (5)

ḊU = −mu(u, v, dE , DU )DU + λ(D −DU ) (6)

13Even if the means of aggregate variables move deterministically, the individual vari-
ables are stochastic.

14Calvo-Armengol and Zenou (2005) overcomes these issues by randomly drawing the
set of links every period. Galenianos (2013) and Galenianos (2014) overcome these issues
by having neighbourhoods be infinitely large.
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Equations (3) through (6) depend on the matching function, which de-
pends on dE and DU . We wish to establish the steady-state of this system.
Setting ḊU = ḊU = ḊU = ḊU = 0 gives the steady-state, which is defined
by the following equations.

dE∗ =

(
mu(u, v, dE∗, DU∗)

λ+mu(u, v, dE∗, DU∗)

)
d (7)

DU∗ =

(
λ

λ+mu(u, v, dE∗, DU∗)

)
d (8)

Only two of the variables have been included, as they are the only ones
that determine the matching rate. The steady-state has several interesting
properties. First, there is no heterogeneity in E-degree or U -degree. Part of
this is due to Assumption 1, which eliminates heterogeneity of degree. The
other part is due to (i) of the mean-field approximation, which imposes the
global distribution of employment locally. Appendix 2 considers the mean-
field approximation for irregular networks, which requires an additional step
of imposing global characteristics of the network topology locally.

Second, notice that d̂E∗ = dE∗

DU∗
is independent of d. In general, the

impact of the total number of links is ambiguous. It depends on the dis-
tribution of unemployment and which specific links are added: more links
can mean more employed friends, or more unemployed people to compete
with. The mean-field approximation, along with Assumption 1, restricts the
distribution of unemployment and network topology so that the two effects
from giving everyone more links exactly cancel out.

Finally, as will become more clear in the next section, the mean-field ap-
proximation combined with Assumption 1 will guarantee that the matching
function is decreasing returns to scale in steady-state. Again, this is a result
of restricting the network topology and distribution of unemployment.

Simulations are performed in Appendix 3 to demonstrate that the mean-
field approximation in this model is an accurate one. Mean-field approxima-
tions are known to be good approximations to random network models in
many circumstances. Bramoulle and Saint Paul (2010) apply the approxi-
mation to a labour market model with search frictions. Jackson and Rogers
(2007) applies the approximation to a network formation model. See Vega-
Redondo (2007) and McComb (2004) for physical applications and general
discussion. The following analysis is done with a mean-field approximation.
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4.2 Equilibrium

A matching function has been derived, and now a full-fledged search and
matching model may be analyzed. Here I augment Pissarides (2000) by
incorporating the network effect. An equilibrium definition is given and
results on volatility, persistence, and wages are stated.

One can imagine a scenario in which wages are set through bargaining
and workers are heterogeneous. A non-cooperative bargaining solution can
be complex and obscure the role of networks. To maintain the focus on
changes in social networks (as opposed to wage setting) I determine wages
with Nash bargaining as in Pissarides (2000). Furthermore, the analysis
assumes that both firms and workers can observe a worker’s current network
position15. Although I believe many of the results are robust to changes in
this specification the verification is beyond the scope of this paper.

Unless otherwise mentioned, I assume that waiting vacancies, S- neigh-
bourhoods, and unemployment are in steady-state. This assumption implies
that each unemployed worker of degree di will have the same neighbourhood
composition, which makes the analysis much easier.

Let r be the (common) rate of return, b be unemployment benefits, p
be productivity, θ = v

u be labour market tightness, and u(d) be the unem-

ployment rate of workers with degree d (defined as u(d̂E(d))). Notice that
unemployment depends on the total number of friends an individual has
instead of the number of employed friends. This is because the steady-state
conditions pin down dEi and DU

i for all i as a function of di.
WU (d) is the flow utility of being unemployed with degree d. WW (d) the

flow utility of working with degree d. The flow utility of a vacancy is WV .
Similarly, filled jobs have flow utility depending on the type of worker hired,
denoted WJ(d). Because wages can be conditioned on a worker’s degree
value functions are too. The value of vacancies, V , does not depend on
any individual worker’s degree because of the uncertainty in the matching
process.

The value functions16 associated with employment status and vacancy
status are

15This includes neighbourhood composition and degree.
16These are valid assuming dEi , DU

i , and u are in steady-state. Otherwise the value
functions have additional terms related to the changes in state-variables.
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rWU (d) = b+mu(d)(WW (d)−WU (d)) (9)

rWW (d) = w(d) + λ(WU (d)−WW (d)) (10)

rWJ(d) = p− w(d) + λ(−WJ(d)) (11)

rWV = −cp+

∫
U
mu(di)(WJ(di)−WV )di (12)

for all d where c > 0, p > 0, and b > 0.
The value functions differ from the baseline Pissarides (2000) model in

an important respect. Worker utility depends on degree d. This is because
the future probability of becoming employed (potentially) depends on d.
This means wages will depend on degree, which means the value of a job
depends on d. Also notice the decomposition of the matching function into
network and random matching components.

The steady-state conditions and Nash bargaining allow us to derive ex-
pressions for unemployment, wages, and S-neighbourhoods. To complete
the model one must determine the vacancy rate v. Each vacancy is a firm
and profit maximization involves decided between creating a vacancy or not.
The final condition is the free-entry condition, WV = 0.

The following definition is the equilibrium concept for fixed networks.

Definition 2 (Fixed Network Equilibrium)

Given a network (L, T ), a Fixed Network Equilibrium (FNE) satisfies:

(i) Steady-State Unemployment: u̇(d) = 0 ∀d

(ii) Steady-State Neighbourhood: ḋEi = ḋUi = ḊE
j = ḊU

j = 0, ∀i ∈ U, j ∈ E

(iii) Nash-Bargaining: w(d) = argmax(WW (d)−WU (d))β(WJ(d)−WV )1−β

(iv) Free-Entry: WV = 0

Conditions (i), (iii), and (iv) are similar to Pissarides (2000). The main
difference is that wages, and thus value functions, depend on an agent’s
degree17. Condition (ii) is a steady-state condition on S-neighbourhoods.

17Technically, they depend on dE . Conditions (i)-(ii) imply that dE∗i is entirely deter-
mined by di.
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4.3 Results on Volatility and Persistence

A FNE can explain some labour market statistics due to the decreasing re-
turns to scale matching function. First, changes in productivity, p, lead to
changes in unemployment rate, u. The changes in u affect the E-neighbourhoods
of unemployed workers. This leads to a lower matching rate and lower
steady-state unemployment. There is a feedback effect as changes in u are
reinforced by less network matching.

Second, vacancy rate v is a jump variable. Thus, changes in p lead to
jumps in v. However, now u has a larger effect on v. To see this examine
θ. In a baseline search model θ exhibits no persistence; exogenous changes
in p lead to a one-time jump in θ. In the model presented here, exogenous
changes in p lead to an initial jump in θ followed by a gradual change towards
a steady-state.

When looking at the effect of p on u one must look at the direct effect
and the indirect effect (through θ). The indirect effect is assessed by exam-
ining the elasticity of θ with respect to p. The next result states that the
equilibrium response in θ (and u) to changes in productivity is larger with
network search than with no network search.

Proposition 2 (Volatility)

Suppose the network satisfies Assumption 1 and let ε(µN )u,(p−b) be elasticity

of u with respect to p− b for µN and that µR +µNd
E is constant. If µN > 0

then
ε(µN )u,(p−b) > ε(0)u,(p−b)

The result demonstrates that equilibrium unemployment can exhibit larger
volatility. The feedback effect of losing intermediaries (employed workers)
between firms and the unemployed magnifies that response of each variable.
Granted the results are limited to the steady-state, if transitory dynamics
are of little consequence then the result is a good approximation.

The next proposition looks at the non-equilibrium dynamics of vacancy
creation. Essentially, if wage determination and free-entry ((iii)-(iv) of FNE
definition) remain then θ is a function of past p and v exhibits more persis-
tence. Let θ(µN ) be the tightness that satisfies (iii)− (iv) at µN ≥ 0.

Proposition 3 (Persistence)

Suppose (iii)-(iv) of FNE continue to hold, f(d) > 0 for some d > 0, and at
t0 ḋ

E 6= 0 and u̇ 6= 0. Then θ̇(µN ) 6= 0 for t > t0 implies µN > 0.
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The result demonstrates that network effects lead to a non-zero θ̇(µN ). The
labour market tightness in the model with µN = 0 is not a function of
flow variables. Now changes in dE and u have an impact on θ by steadily
increasing (decreasing) the matching efficiency when p increases (decreases).

5 Numerical Simulations

A numerical simulation is performed to see if non-steady-state dynamics
lead to different results. The model is calibrated to match certain moments
from the U.S. data from 1951-2003. Here we use the dynamic version of the
model, as in Shimer (2005). Equilibrium tightness is implicitly defined by:

r + λ+ γ

mv(θp,dE , d
E)

+ βθp,dE =
(1− β)(p− z)

cp
+ γEp[1/mV (θp′,dE′ , d

E′)] (13)

where γ is the rate at which p is exogenously changed. Notice that
unlike the previous literature, tightness depends on the current variable dE

and future variable dE
′
. Solving the system is straightforward for many

computer packages. However, the equation must be solved at each iteration
because dE changes, increasing the computation time.

5.1 Calibration

The calibration strategy follows Shimer (2005) fairly closely18. The addi-
tion of U.S. data beyond 2003 changes the aggregate statistics very little.
Productivity follows a discretized Ornstein-Uhlenbeck Process to match the
volatility present in U.S. data, though the state space is smaller due to com-
putational limitations. The unemployment utility, b = 0.4, is chosen within
the range of unemployment benefits as a percentage of mean income.

The bargaining power, β = 0.72, is chosen to satisfy the Hosios Condition
in a standard search model. Unlike Shimer (2005), the matching function
used here has a non-constant elasticity of vacancies. Nonetheless, the chosen
bargaining weight is close to the average elasticity of vacancies.

The separation rate, λ = 0.09, is chosen to be close to that observed in
U.S. data. The parameters left are used to target relevant means, varying
the relationship between µR and µN across simulations. Table 3 summarizes
the choices across the three simulations.

18Hagedorn and Manovskii (2008) take issue with the calibration strategy. These crit-
icisms do not change the main message that networks can explain some unemployment
volatility.
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No Network Effect Large Network effect Small Network Effect

λ 0.09 0.09 0.09
c 0.32 0.32 0.28
β 0.72 0.72 0.72
b 0.4 0.4 0.4
d - 100 100
µV
µR

1/4 1/6 1/6
µN
µR

0 1/18 1/1000

µR 6.3 9.2 100

Table 3: Calibrated Variables

Model u v θ m p

No NE Std. Dev. 0.012 0.010 0.017 0.013 0.017
(0.002) (0.001) (0.002) (0.002) (0.002)

Large NE Std. Dev. 0.165 0.154 0.016 0.180 0.017
(0.005) (0.002) (0.003) (0.005) (0.002)

Small NE Std. Dev. 0.017 0.010 0.018 0.019 0.017
(0.004) (0.002) (0.002) (0.005) (0.002)

Table 4: Standard deviations for different models.

We target mean unemployment at 0.056, and mean matching rate at 1.5.
Because we measure vacancies as an index, we have the freedom to target
θ to 1.25 without loss of generality. Finally, we keep µN and µR within
an empirically reasonable range across our second two simulations. We use
the survey of Jackson (2008) to obtain targets for the fraction of jobs found
through a network. The small network effect has matching through networks
on average accounting for approximately 3

11 (or 27.3%) of matches, whereas
the large network effect account for 3

5 (or 60%) of all matches on average.
Because the data is filtered, the network effect will be filtered out if it

operates at a quarterly frequency. Therefore, we run simulations at a rate
of 15 times more frequent than a quarter. Intuitively this means that un-
employed workers talk to employed friends roughly five times per month,
allowing feedback effects to work between quarters. The data is then aggre-
gated by capturing every 15th observation.

5.2 Results

The results of the no network effect model reproduce Shimer (2005) rel-

19



No Network Large Network Small Network

v Autocorrelation 0.600 0.944 0.622
(0.076) (0.079) (0.076)

corr(u,v) -0.658 0.944 -0.181
(0.064) (0.066) (0.064)

Table 5: Autocorrelation for v and contemporaneous correlation of u and v.

atively accurately, despite using a different matching function and slight
different productivity process specification19. Table 4 shows the standard
deviation (from an HP filtered trend) and autocorrelation across models for
no network effect, large network effect, and small network effect. The statis-
tics are averaged across 1000 model simulations each, with standard errors
in brackets.

Unemployment and matching rates are impacted most by network ef-
fects, increasing by 1.5 to 4 times. Vacancies are affected somewhat, roughly
doubling in volatility and exhibiting a small increases in autocorrelation.

Table 5 illustrates two important results. First, network effects increase
the autocorrelation of vacancies somewhat. The increase is small, but high-
lights the role networks play as a propagation mechanism.

However, adding network effects disconnects the unemployment-vacancy
relationship. Table 5 also shows how unemployment is contemporaneously
correlated with vacancies. The correlation is highly negative in the data,
low and negative with small network effect, and positive with large network
effects.

The positively sloped Beveridge curve suggests a bound on network ef-
fects. Much of the correlation can be regained by setting low network effects
and artificially increasing the volatility of θ. Therefore, a realistic model will
likely include network effects together with mechanisms that increase θ.

6 Conclusion

The role of network effects in the labour market has yet to be fully explored.
I contribute to the literature by developing a model with fixed networks
and evaluate the impact of network effects on the volatility and persistence
of important labour market variables. I characterize the equilibrium and
find that the existence of network effects increases the volatility of unem-
ployment, and matching rates. Networks also impact the propagation of

19The state-space is coarser due to computational constraints.
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exogenous changes in productivity.
Our results motivate the further investigation of network effects in search

and matching models of the labour market. First, the result of including net-
work effects together with other mechanisms for increasing volatility, such
as rigid wages or endogenous productivity, has yet to be explored. Per-
haps the inclusion of other mechanisms, together with network effects, can
produce observed volatility and maintain a realistic unemployment-vacancy
relationship.

Second, the model presented here takes the link structure as given. A
model of endogenous link formation may yield interesting dynamics. I leave
these issues for future research.
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8 Appendix A: Proofs

8.1 Proof of Lemma 1

When workers apply randomly and independently to vacancies we have: #
of matches = # of vacancies × the probability a vacancy gets filled.
Rewrite this as

M(u, v, χE) = |V | × p
where M(u, v, χE) is the total number of matches as a function of the
unemployment rate, vacancy rate, and the E-degree set. Whether a
particular vacancy gets filled or not is a binary random variable and we
can write p = 1− q where q = the probability that all unemployed workers
apply elsewhere.
If κ(d̂E) = µRξ + µN d̂

E is the “search intensity” of an unemployed worker
with d̂E help from employed friends, then (because workers randomly and
independently apply)

q = Π
dEmax
dE=0

q(dE) = Πd̂E (1− 1

|V |
)κ(d̂E)|U(d̂E)|

where |U(d̂E)| is the number of unemployed workers with d̂E and

q(d̂E) ≡ 1− 1
|V |)

κ(d̂E)|U(d̂E)| is the probability that all unemployed workers

with d̂E do not apply to the vacancy. Therefore,

M(u, v, χE)

|L|
= v(1−Πd̂E (1− 1

v|L|
)κ(d̂E)u(d̂E)|L|)

where |L| is the size of the labour force.

Taking |L| → +∞ for all d̂E , and letting v, v
u ≡ θ, and u(d̂E)

u ≡ α(d̂E) be

constant and finite for all d̂E we get

m(u, v, χE) = v(1−ΠdEe
−κ(d̂E)α(d̂E)

θ )

which can be rewritten as

m(u, v, χE) = v(1− e
−κ̄
θ )

where κ̄ is the average over unemployed workers and m(u, v, χE) is
matches per worker.
To find the continuous time version, let search intensity be κ(d̂E)∆t and
look for matches per worker per unit time:

m(u, v, χE)

∆t
=

v

∆t
(1− e−

κ̄∆t
θ )
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Applying L’Hopital’s rule gives

lim
∆t→0

m(u, v, χE)

∆t
= κ̄u

�

8.2 Proof of Proposition 1

The proof has two steps: impose v̇w = 0 and solve for the steady-state
matching function to get (i), and then show (ii)− (iv) are true.

Step 1: First I derive the aggregate matching function as a function
of the network. Setting v̇w = 0 yields a steady-state fraction of waiting

vacancies vw
v = v−µN d̄Eu

µRu+v . I restrict attention to values where the fraction is
non-negative.

The total number of matches (over a small interval) is m(u, v, d̄E) =
µRu

vw
v + µN d̄

Eu. Notice the decomposition into a random search and net-
work search component. Rearranging gives the aggregate matching function
as

m(u, v, d̄E) = µRu
vw
v

∗
+ µN

¯̂
dEu

=
µRu(µV v − µN ¯̂

dEu)

µRu+ µV v
+ µN

¯̂
dEu

=
µV vu

µRu+ µV v
(µR + µN

¯̂
dE)

=
µV v(µR + µN

¯̂
dE)

µR + µV θ

(14)

One gets the matching function by realizing that
¯̂
dE =

∫
i∈U

∑
j∈nE

i
1/DUj di

u

Step 2:

To show (ii) let γ > 1 and
¯̂
de(d) be the average d̂Ei over those with degree

d.
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m(γu, γv) =
µV (γv)

µR + µV θ
(µR + µN

∑
d f(d)u(d)

¯̂
dE
′
(d)

u
)

<
γµV v

µR + µV θ
(µR + µN

∑
d f(d)u(d)

¯̂
dE(d)

u
)

= γm(u, v)

(15)

The step with the inequality comes from the fact that f(d)u(d)
u is constant,

and
¯̂
dE
′
(d) ≥ ¯̂

dE(d) for all d with a strict inequality for some.
To show (iii) one need only differentiate m(u, v) with respect to v and

¯̂
dE respectively. The proof is sufficiently trivial to be left to the reader.

To show (iv) one need only take the derivative of m(u, v) with respect
to u. Equivalently, we look at each component of the matching function.

∂m(u, v)

∂u
=

(µR + µN
¯̂
dE)µV v

(µR + µV θ)2

(µNv
u2

)
+

(
µV vµN

(µR + µV θ)

)(
∂

¯̂
dE

∂u

)

=

(
m(u, v)

u

)2
(

1

(µR + µV
¯̂
dE)

)
+

(
µNm(u, v)

µR + µN
¯̂
dE

)(
∂

¯̂
dE

∂u

)

=
µNm(u, v)

(µR + µN
¯̂
dE)

[
m(u, v)

µNu2
+
∂

¯̂
dE

∂u

]
(16)

This term will be positive or negative depending on the size of the pa-
rameters. If µNu is large enough then, because the second term is negative,
the derivative is negative.

�

8.3 Proof of Proposition 2

The proof has two steps. First, the equilibrium, described in Definition 2,
is shown to be reducible to two equations. Second, given these equations
(displayed as (20) and (21) below) I can calculate εu,p−b and εθ,p−b. The
proof is done for µV

µR
= 1, though the results are not sensitive to the

restriction.
Step 1: The FNE conditions establish several equations. Substituting in
d̂E∗ = 1−u

u into the matching function reduces the equilibrium conditions
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to the following equations. Note that in equilibrium each agent with
degree d will have the same dE∗. I will suppress the ∗ notation. The
remaining conditions are

0 = λ(1− u)− θ

1 + θ
(µR + µN

(1− u)

u
)u (17)

0 = (1− β)(WW (d)−WU (d))− β(WJ(d)−WV ) (18)

0 = p− w̄ +
pc(r + λ)(1 + θ)

µR + µV
(1−u)
u

(19)

where w̄ is the average wage. Equation (17) is the steady-state imposed on
(2) for k = d, with dE∗ substituted in, (18) is the (rearranged) first-order
condition from Nash bargaining given by (iii) in Definition 2, and (19) is
the result of imposing the free-entry condition (stated as (iv) from
Definition 2).
The above equation are analogous to the equations of Pissarides (2000).
Equation (17) imposes steady-state unemployment, equation (18) is the
first-order condition for Nash bargaining, and equation (19) is the
job-creation equation. Notice that, although equations that depend on d,
this will fall out due to Assumption 1 and imposing the mean-field
approximation20

The system is reducible to the following two equations:

0 = λ(1− u)− θ

µR + θ
(µR + µN

(1− u)

u
)u (20)

(1− β)(p− b)
c

= (r + λ)
(µR + θ)

(µR + µN
(1−u)
u )

+ βθ (21)

Step 2: Let ηθ ≡ ∂mu
∂θ

θ
mu

and ηu ≡ ∂mu
∂u

u
mu

be elasticities. Notice that µV
µR

constant implies that ηθ does not vary with µN or µR.
Taking the total derivative of the system one can solve for the elasticities.
Let ηx be the elasticity of mu with respect to x.

20In the case of a general degree distribution with n types, there is a system of 2n+ 1
equations, because (19) just depends on the average wage.
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εu,p−b =
−(1− β)(p− b)ηθmu

cθ[(mu + λ)((r + λ)(1− ηθ) + β) + ηumu((r + λ)(1− 2ηθ) + β)]
(22)

εθ,p−b =
(λ+mu(1 + ηu))

ηθmu
|εu,p−b| (23)

Increasing µN from zero to a positive number decreases ηu from zero to a
negative number, keeping (µR + µN (1− u)d) constant. In this case the
absolute value of (22) increases as proposed.
The absolute value of (23) changes in an ambiguous way.

�

8.4 Proof of Proposition 3

The proof involves keeping the job creation equation and wage equation
from the previous proof and taking the time derivative of θ. The idea is
that the network effect, which shows up in the matching function, will create
persistence in changes in p. Totally differentiating the job creation equation
(19) gives:

(
(r + λ)

E[µR + µN d̂E ]
+ β)

∂θ

∂t
=

(r + λ)(µR + θ)

E[µR + µN d̂E ]2
µNE[

∂d̂E

∂t
] +

∂Ξ

∂t
(24)

where I use E[] to represent averages. With Assumption 1 these expec-
tations go away. The ∂Ξ

∂t is the term that captures the fact that the firm is
forward looking and takes the change in dE into account (see equation (13)
in Section 5), which means ∂Ξ

∂t = 0 in steady-state. It is clear that ∂θ
∂t > 0

requires a network effect µN > 0.

�

8.5 Appendix 2: General Mean-Field Equations

Writing down the equations requires more notation, which is defined below.
The following equations describe the mean-field approximation for all d:

ḋE(d, χE) = mu(u, v, χE)(d− dE(d, χE))− λdE(d, χE) (25)
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ḋU (d, χE) = −mu(u, v, χE)dU (d, χE) + λ(d− dU (d, χE)) (26)

ḊE(D,χE) = mu(u, v, χE)(D −DE(D,χE))− λDE(D,χE) (27)

ḊU (D,χE) = −mu(u, v, χE)DU (D,χE) + λ(D −DU (D,χE)) (28)

where mu(u, v, χE) is the matching rate of an unemployed agent and λ is the
separation rate. Equations (25) through (28) depend on χE , in particular
dE , DU , and d, the number of total friends. The set χE matters because
agents with more employed friends (who themselves have few unemployed
friends) will become employed faster.

Notice that dU (d, χE) = d − dE(d, χE). The first term of equation (25)
describes the number of U -neighbours that gain employment whereas the
second term of equation (25) describes the number of E-neighbours that
lose jobs. Therefore, there is no net loss or gain in total ties.

The steady-state for equation (25) is defined by dE∗(d, χE∗) = mu(u,v,χE∗)
λ+mu(u,v,χE∗)

d.

However, the total number of employed friends is given by

dE∗(d) =
∑
α

f̂(α)dE∗(α, χE∗)

and unemployed friends by

DU∗(d) =
∑
α

f̂(α)DU∗(α, χE∗)d

I have introduced new notation: f̂(α) is the neighbour degree distribution,
which gives the number of friends with degree α.

dE∗(d) =

(∑
α

f̂(α)
mu(u, v, χE∗)

λ+mu(u, v, χE∗)

)
d (29)

DU∗(d) =

(∑
α

f̂(α)
λ

λ+mu(u, v, χ∗)

)
(30)

Notice that mu(u, v, χE∗) = µV θ
µV +µRθ

× (µR + µN
∑

α
dE∗(α)
DU∗(α)

). Normally,

a mean-field approximation would impose f̂(d) to be the average proportion
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of friends with degree d. This allows for a wide-range of network topologies.
For example, Poisson random networks would impose f̂(d) = f(d). Poisson
random graphs have many short-comings. The paradox of friendship states
that the average degree of a neighbour exceeds the average degree over all
agents; friends are more popular on average. One can correct this by setting
f̂(d) = f(d)d

d̄
as in the configuration model outlined in Newman (2010).

Note that because the network is fixed the fraction f̂(d) does not depend
on the unemployment rate or vacancy rate. Furthermore, notice that f̂(d) =
1 when the network is regular.

9 Appendix 3: Mean-Field Approximation of Tran-
sitional Dynamics

To demonstrate the accuracy of a mean-field approximation, a simulation is
performed. An adjacency matrix A defines a network, where element aij is 1
if (i, j) ∈ T and 0 otherwise. A random n×n adjacency matrix is generated
in which each agent has 100 friends.

A time series is generated with constant p for the true model, and its
mean-field approximation. Figure 2 plot the unemployment rate (vertical
axis) against time (horizontal axis). The comparison of the transition dy-
namics for unemployment in the two models demonstrates that the mean-
field analysis approximates the true model well.
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Figure 2: True Model (blue) vs. Mean-field Approximation (green)
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