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1 Introduction

Social networks are an important source of information for individuals and firms. The

emergence of social media has led to an unprecedented level of information sharing among

“friends,” i.e. those who are connected and communicate. Given this, should one expect

people to agree in the long run? We provide a new sufficient condition under which non-

Bayesian agents in a given network converge to consensus.

In our model, agents update their opinions based on the prior opinions of their friends

(and potentially themselves). Though we focus on opinions, the model can accommodate

any variable on a convex set, where the convex hull of initial values is compact. For instance,

instead of an opinion – a subjective probability – agents may update their belief about the

value of an unknown parameter, adopt a cultural norm, or best-respond to previous strategies

in a game (i.e., Cournot learning).

Literature on non-Bayesian learning beginning with DeGroot (1974) has agents updating

their beliefs to a weighted average of their friends’ beliefs. Lorenz (2005) provides a gener-

alization of the DeGroot model by allowing the weights depend on time and prior beliefs.

The level of generality allows for many types of updating behaviour, including those that ex-

hibit optimism or pessimism (over-weighting or under-weighting), and cognitive dissonance

(giving a higher weight to those with similar beliefs). He demonstrates that aperiodic and

strongly connected networks reach agreement if the weight one gives to a friend’s opinion

is bounded away from 0 by a positive number.1 We provide a more permissive sufficient

condition than that of Lorenz (2005). Roughly speaking, Roughly speaking, our result says

that consensus is achieved unless some agents rely with an increasingly “faster” rate on their

friends with the minimal opinion while some others on those with the maximal opinion.

DeMarzo et al. (2003) considers a time-varying social network that has agents’ weighting

themselves differently over time. They show that opinions converge when agents weight

other people’s opinions “often enough.” Our result is related to DeMarzo et al. (2003)’s,

and the two are equivalent for complete networks. Furthermore, in non-complete networks

our condition is more restrictive. However, our condition is applicable in a wide range of

networks while DeMarzo et al. (2003)’s condition is not applicable outside of their specific

model.

Mueller-Frank (2013) considers a general class of time-varying updating rules that include

rules with belief-dependent weights. The main conditions for convergence to consensus are

(i) updating rules must satisfy continuity and have posteriors be strictly in between the most

1In particular, Lorenz (2005) requires that if there exists y and τ such that wτ (y) ≥ δ > 0 then
wt(x) ≥ δ > 0 for all x and t.
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extreme priors in one’s neighborhood and (ii) the period-by-period updating functions must

be of finite type. Our result does not require updating rules to be continuous or be of finite

type.

This note is structured as follows. Next we introduce preliminary concepts and notation.

Section 3 contains results and examples. We conclude with a discussion. Proofs are found

in the Appendix.

2 Preliminaries

A finite set A = {1, · · · , a} of agents interact with each other. Each agent i ∈ A listens to a

fixed group of agents, which may exclude i. A function C : A→ 2A which maps each agent

to some subset of A identifies the set of agents to whom a given agent listens. Specifically, i

listens to C(i) and we sometimes refer to C(i) as i’s neighborhood. Naturally, if some agent

j is in some agent i’s neighborhood, we say j is i’s neighbor. A pair 〈A,C〉 is a network.

We denote the set of agents to whom i listens in k ≥ 2 steps by Ck(i). Formally, Ck(i) is

defined iteratively as follows: Ck(i) = ∪j∈C(i)C
k−1(j).

We say that agent i and j communicate if there exist natural numbers k and k′ such that

j ∈ Ck(i) and i ∈ Ck′(j). Network 〈A,C〉 is irreducible if any two agents in A communicate.

A sequence of agents i1, i2, · · · , ik is a simple cycle if (i) i1 = ik, (ii) no agent other than i1

appears more than once in the sequence while i1 appears exactly twice and (iii) il listens to

il+1 for all l = 1, · · · k − 1. The length of a simple cycle i1, i2, · · · , ik is k − 1.

Definition 1. A network 〈A,C〉 is aperiodic if the greatest common divisor of the lengths

of its simple cycles is 1.

Let us fix a network 〈A,C〉 which is irreducible and aperiodic. We use the following

notation:

θ ≡ arg min
k
{k ∈ Z+|Cκ

i = A,∀i ∈ A, ∀κ ≥ k}.

It is well-known that θ exists for irreducible, aperiodic networks.

An opinion/belief of the agents is an a-dimensional vector x where xi is agent i’s opinion

about some parameter. Each agent’s opinion xi is in the [0, 1] interval, and consequently,

the set of possible opinions is [0, 1]a. We use the following conventional notations: for each

i ∈ A, x−i ≡ (xj)j 6=i and x = (xi, x−i).

Time is discrete and starts at period 0. At the initial period, the agents have an ex-

ogenously given opinion, and they exchange their opinions according the network structure.

Afterwards they update their opinions which become the following period’s initial opinions.
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In the following period, the agents again exchange and update their opinions. The process

repeats every period. We formalize this opinion updating process by introducing an (opin-

ion) updating function T : N × [0, 1]a → [0, 1]a where N is the set of non-negative integers.

Agent i’s updating function is Ti and the process is a Markov chain.2 If the opinion is x

in period t then T (t, x) is the opinion in period t + 1. We will sometimes use the notation

T t,1(x) for T (t, x) and iteratively define T t,k(x) as T (t+k−1, T t,k−1(x)) for all integer k ≥ 2.

In words, T t,k(x) is the vector of opinions in period t+k when the period t vector of opinions

is x.

We are interested in how the agents’ opinions evolve in the long-run. In this sense, the

main focus of our study is the properties of T∞(x) ≡ limk→∞ T
0,k(x) when it is well-defined.

We say a network reaches consensus if T∞i (x) = T∞j (x) for all x, i and j.

As we indicated before, the network structure must affect the updating function. Specif-

ically, we assume that (i) one’s opinion is not affected by the opinions of those who are not

in the agent’s neighborhood, i.e., for each x and x̄−C(i), Ti(t, x) = Ti(t, xC(i), x̄−C(i)) for all

t ≥ 0, and (ii) if agent j is i’s neighbor then j’s opinion affects i’s in some cases, i.e., for

each j ∈ C(i), there exists x and x̄j, and t such that Ti(t, x) 6= Ti(t, x̄j, x−j). We sometimes

refer to T (t, ·) as the period-t updating function.

We assume that no agent updates her opinion outside of the extremal opinions of her

neighbors.

Assumption 1. Ti(t, x) ∈ [minj∈C(i) xj,maxj∈C(i) xj] for all i and x.

Unless otherwise stated, Assumption 1 holds for the rest of this paper. Next we present

some examples of updating functions, each of which satisfy Assumption 1.

Ti(t, x) =

 ∑
j∈C(i)

wtijx
p
j

 1
p

where wtij > 0,
∑
j∈C(i)

wtij(x) = 1 (1)

Ti(t, x) = λt

 ∑
j∈C(i)

wijxj

+ (1− λt)xi where wij > 0,
∑
j∈C(i)

wij = 1, λt ∈ [0, 1] (2)

Ti(t, x) =
Πj∈C(i)x

wtij
j

Πj∈C(i)(1− xj)w
t
ij + Πj∈C(i)x

wtij
j

where wtij > 0,
∑
j∈C(i)

wtij = 1 (3)

Ti(t, x) =
∑
j∈C(i)

wtij(x)x where wtij(x) > 0,
∑
j∈C(i)

wtij(x) = 1 (4)

2We note here that allowing updating functions to be dependent on history of opinions does not alter
our main result, Theorem 1.
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The updating rule in (1) is a (weighted) Lp-norm of opinions. Notice that the weights,

wtij, vary over time. When p = 1 this rule reduces to the one in DeGroot (1974). The

updating rule in (2) is considered in DeMarzo et al. (2003). This updating function has a

very specific structure: the time-varying weight is on a constant group of friends and one’s

own prior. This is equivalent to varying inertia in opinions.

The updating rule in (3) is considered by Molavi et. al. (2016).3 with time-varying

weights. A recent paper by ? studies the foundations of social learning using an axiomatic

approach. This updating functions is “more Bayesian” than the standard DeGroot one in the

sense that it violates fewer properties of a Bayesian updating function. Equation (4) gives

the formulation of the model expressed in Lorenz (2005). Notice that the weights, wtij(·),
vary over time and is a function of current opinions. It is easy to see that any updating

function can be written in the form of (4).

Lorenz (2005) shows that if wtij(x) ≥ δ > 0 for all t ≥ 0, i ∈ A, j ∈ C(i) and x, then the

agents’ opinions converge to consensus in the long run (assuming an irreducible and aperiodic

network). This sufficient condition is not satisfied for (2) when λt → 0 fast enough, or for

(1) when wtij → 0 for some i and j ∈ C(i). However, in these cases consensus sometimes

is reached. We will introduce a general condition that subsumes Lorenz (2005)’s sufficient

condition.

3 Results

To introduce our condition, we need to define the following two variables:

αti(x) =

{
1 if |C(i)| = 1 or if maxj∈C(i) xj = minj∈C(i) xj

Ti(t,x)−minj∈C(i) xj
maxj∈C(i) xj−minj∈C(i) xj

in all other cases

and

βti(x) =

{
1 if |C(i)| = 1 or if maxj∈C(i) xj = minj∈C(i) xj

maxj∈C(i) xj−Ti(t,x)

maxj∈C(i) xj−minj∈C(i) xj
in all other cases

.

Observe here that

Ti(t, x) = (1− αti(x)) min
j∈C(i)

xj + αti max
j∈C(i)

xj

= βti min
j∈C(i)

xj + (1− βti(x)) max
j∈C(i)

xj.

3In Malavi et al. (2016) the weights wtij are time-independent, and
∑
j∈C(i) w

t
ij need not equal 1.
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If we think of Ti(t, x) as the convex combination of the extremal opinions in i’s neighbor-

hood, then αti(x) and βti(x) are the weights i places on the maximal and minimal opinions,

respectively.

Let αt be the lowest weight given by any agent to the maximal opinion in her neighbor-

hood, i.e., αt ≡ infi∈A&x∈[0,1]a α
t
i(x). In addition, for any integer k ≥ 1, let αt,k ≡

∏t+k−1
τ=t ατ .

Similarly, we define βt and βt,k. Observe here that αt,k + βt,k ≤ 1 for all integers t ≥ 0 and

k ≥ 1 in irreducible networks because αti(x) = 1− βti(x) for all i and x with maxj∈C(i) xj 6=
minj∈C(i) xj.

In the lemma below, we consider how the extremal opinions behave.

Lemma 1. Let 〈A,C〉 be an irreducible, aperiodic network. Then for all x and t ≥ 0,

max
j∈A

T t,θj (x)−min
j∈A

T t,θj (x) ≤ (1− αt,θ − βt,θ)
(

max
j∈A

xj −min
j∈A

xj

)
.

If the network is complete, i.e., if j ∈ C(i) for all i and j, then the definitions of αt

and βt give the lemma above with θ = 1. In non-complete networks, the intuition behind

the lemma is as follows: because the network is irreducible and aperiodic, all the agents

communicate with one another after θ periods. This means that both maximal and minimal

(initial) opinions affect each agent’s opinion in θ periods. The lowest weight one assigns to

the maximal opinion in her neighborhood in period τ is ατ . Thus, each agent must assign

at least the weight of αt,θ to the period-t maximal opinion in the whole network after θ

periods. Thus, T t,θi (x) ≥ (1− αt,θ) mini∈A xj + αt,θ maxi∈A xj for all i. A similar logic yields

that T t,θi (x) ≤ βt,θ minj∈A xj + (1 − βt,θ) maxj∈A xj. By rearranging terms, we obtain that

between periods t and t + θ, the distance between extremal opinions shrinks at least by

αt,θ + βt,θ fraction.

Theorem 1. Let 〈A,C〉 be an irreducible, aperiodic network. Then consensus is reached if

there exists a sequence {tk} such that (i) tk+1 − tk ≥ θ for all k and (ii)

lim
τ→∞

τ∑
k=1

(αtk,θ + βtk,θ) =∞

To prove this theorem, note that the extremal opinions in the network cannot move

further apart over time because (by Assumption 1) no agent’s updated opinion falls outside

of the interval formed by the extremal opinions in the agent’s neighborhood. The lemma

preceding the theorem means that after τ blocks of θ periods (where block k starts at period

tk), the extremal opinions will be at most
∏τ

k=1(1 − αtk,θ − βtk,θ) fraction of the distance

between extremal opinions in the initial period. We complete the proof by showing that
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this maximal fraction goes to 0 as the number of blocks increases as long as the sum of

(αtk,θ + βtk,θ) over k converges to infinity.

Our sufficient condition means that unless some agents rely on the minimal opinion

while others on the maximal opinion at an increasingly “faster rate,” consensus is reached

in irreducible, aperiodic networks. It is easy to see that our condition is significantly more

general than that of Lorenz (2005). He considers updating functions in the form of (4) and

shows that consensus is reached if wtij(x) ≥ δ > 0 for all t, i, j ∈ C(i) and x. Obviously,

our condition is only in terms of weights assigned to the extremal opinions. In fact, as long

as one of these is bounded below or is converging to 0 slowly then our condition is satisfied.

Consequently, our condition subsumes Lorenz’s.

It is also easy to see that consensus occurs in the long term if αt,θ + βt,θ = 1 for some t.

In non-complete networks, this condition requires that either everyone updates her opinion

to the maximal one in each period between t and t + θ or everyone to the minimal one. In

complete networks, the condition could mean one more scenario in which everyone weighs

the maximal and minimal opinions in the same way.

Finally, we note here that our sufficient condition is satisfied when at least one of the

following conditions are satisfied:
∑∞

k=1 α
tk,θ =∞ or

∑∞
k=1 β

tk,θ =∞.

4 Discussion

We now consider how our condition translates to specific networks we considered in the

previous section.

Example 1 (Lp-updating function). If every agent has the same updating function in (1),

then the weights do not depend on the current opinion. Thus, let wti ≡ minj∈C(i) w
t
ij, w

t ≡
mini∈Aw

t
i, and wt,θ ≡

∏t+θ−1
τ=t wτ for all t ≥ 0. In this case, our sufficient condition is

satisfied if there exists {tk} with tk+1 − tk ≥ θ and
∑

k w
tk,θ = ∞. To see this, observe that

when p = 1 we have that αt = βt = wt. Thus,
∑

k w
tk,θ = ∞ is equivalent to

∑
k(α

tk,θ +

βtk,θ) =∞. Let p ∈ (0, 1). Then we know that by Jensen’s inequality,

∑
j∈C(i)

wtijx
p
j ≤

 ∑
j∈C(i)

wtijxj

p

.
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Subsequently,

Ti(t, x) =

 ∑
j∈C(i)

wtijx
p
j

1/p

≤
∑
j∈C(i)

wtijxj ≤ wt min
j∈C(i)

xj + (1− wt) max
j∈C(i)

xj.

Thus,
∑

k w
tk,θ = ∞ implies that

∑
k β

tk,θ = ∞. A similar proof works for the p > 1 or

p < 0 cases.

Example 2. If every agent’s updating function is the form of (3), then the weights do not

depend on the current opinion. In this case, we will show that, unless the initial opin-

ions satisfy both mini∈A x
0
i = 0 and maxi∈A x

0
i = 1, consensus is reached. Clearly, if ei-

ther mini∈A x
0
i = 0 or maxi∈A x

0
i = 1 (but not both) then opinions converge to 0 or 1,

respectively (for irreducible, aperiodic networks). Thus, let us concentrate on opinions where

0 < mini∈A xi < maxi∈A xi ∈ (0, 1) < 1.

As in the previous example let us define wt and wt,θ for all t ≥ 0. In this case, our

sufficient condition is satisfied if there exists {tk} with tk+1 − tk ≥ θ and
∑

k w
tk,θ =∞.

To prove this, let Zt
i =

xti
(1−xti)

and zti = lnZt
i . Notice that the updating function can be

rewritten as Zt+1
i = Πj∈C(i)(Z

t
j)
wtij and therefore:

zt+1
i =

∑
j∈C(i)

wtijz
t
i

Notice that this has the same structure as time-varying DeGroot (1974), which is a special

case of (1). The only difference is that zti ∈ (−∞,+∞), which is not a compact set. However,

our proof for Theorem 1 is valid when [mini∈A z
0
i ,maxi∈A z

0
i ] is a compact set, which occurs

when mini∈A x
0
i ,maxi∈A x

0
i ∈ (0, 1). Thus, consensus is reached as long as there exists {tk}

with tk+1 − tk ≥ θ and
∑

k w
tk,θ =∞ as we have shown in Example 1.

Finally, let us consider the updating functions in the form of (2). DeMarzo et al. (2003)

consider show that consensus is reached if
∑+∞

t=1 λ
t = +∞ in this setting. Our condition

would require the existence of a sequence {tk} with tk+1− tk ≥ θ and
∑+∞

k=1 λ
tk,θ =∞ where

λt,θ ≡
∏t+θ−1

τ=t λτ . Thus, our condition is more restrictive than that of DeMarzo et al. (2003).

The two conditions however are equivalent in complete networks. This observation raises

the following question: can our condition be replaced in Theorem 1 by
∑+∞

t=1 (αt + βt) =∞.
The answer turns out to be negative and we demonstrate this point in the example below.

Example 3. There are four agents and agent 1 listens to agents 1 and 2, agent 2 to agents

1, 2 and 3, agent 3 to agents 2, 3 and 4, and agent 4 to agents 3 and 4. The updating
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functions are as follows (for ε < 1
4
):

Ti(t, x) =

{
(1− δti) minj∈C(i) xj + δti maxj∈C(i) xj if i = 1, 2

δti minj∈C(i) xj + (1− δti) maxj∈C(i) xj if i = 3, 4

where

δt1 = δt4 =

{
ε

2(2t−2−(2t−1)ε)
if t is even

0.5 if t is odd

and

δt2 = δt3 =


ε

2t−2−(2t−1)ε
if t is even.

2t−2−(2t−1)ε
2t−1−(2t+1−1)ε

if t is odd

Let us consider the sequence {T 0,t(0, 0.5, 0.5, 1)}. One can calculate that

T 0,t(0, 0.5, 0.5, 1) =


(

2t−1
2t−1 ε, 2ε, 1− 2ε, 1− 2t−1

2t−1 ε
)

if t is odd(
2t−1
2t−1 ε,

1
2
, 1

2
, 1− 2t−1

2t−1 ε
)

if t is even.

One can easily see that the first and last agent’s opinion converges to 2ε and 1− 2ε, respec-

tively. However, the opinions of agents 2 and 3 do not converge.

Observe here that αt = βt = mini=1,··· ,4{δti}. Furthermore,
∑

t α
t =

∑
t β

t = ∞ because

the even numbered αts and βts converge to 0 while the odd numbered ones to 0.5. However,

as we already mentioned above, the agents do not converge to a consensus. Our sufficient

condition is not satisfied here. To see this, observe that θ = 3 in this example. Thus, any

three consecutive periods will have at least one odd period and αt and βt decrease by 4th

between any two consecutive odd periods. Subsequently, whatever 3 period blocks we choose,

both αt,θ and βt,θ decrease at least by half between two blocks, which is a too fast of a decrease.

The above example has a very specific structure: Let us focus on agents 1 and 2 because

their behavior is copied by the other two in the opposite way. Agent 1 has the minimal opinion

in all periods which increases over time. Agent 2’s opinions bounce between 0.5 and some

values which get increasingly closer to agent 1’s opinion. This alternating feature of agent 2’s

opinion is justified because agent 3’s opinions also bounce around and counterbalance. The

reason for non-convergence of opinions is the following: agent 1 increasingly relies on her own

opinion over time in odd periods, i.e., whenever the opinions of agents 1 and 2 are farther

apart. Hence, agent 1’s opinion moves very little from where it was in these periods. On the

other hand, agent 1 gives almost the equal weights to her and 2’s opinions in even periods,

i.e., whenever the opinions of agents 1 and 2 are very close. Unfortunately, in these periods

their opinions are increasingly closer; thus, agent 1’s opinion barely budges. Consequently,
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the opinions do not converge.

We conclude this note by considering the restriction of our analysis to Markov chains.

Are our results robust to conditioning on the full history of beliefs? Notice that Theorem

1 is valid for history-dependent updating functions. In fact, the proof remains the same.

Updating functions that violate the Markov property converge to consensus if the conditions

of the theorem are satisfied.
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Appendix

To prove Lemma 1 we first introduce some notation and definitions. Let T : [0, 1]n → [0, 1]n

T : [0, 1]n → [0, 1]n be a function such that

T i(t, x) = (1− αt) min
j∈C(i)

xj + αt max
j∈C(i)

xj

for all i and x. We define T t+τ,t(x) in the same way as we defined T t+τ,t(x).

The following lemma plays a key role in the proof of Lemma 1.

Lemma 2. (a) For all natural number τ ≥ 1 and t ≥ 0, T t+τ,t(x) is monotonic.

(b) For all natural number k ≥ 1 and x, T t,k(x) ≥ T t,k(x).
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(c) Let 〈A,C〉 be irreducible and aperiodic. Then for any x and j ∈ A,

min
j∈A

T t,θj (x) ≥ (1− αt,θ) min
j∈A

xj + αt,θ max
j∈A

xj.

Proof. (a) Because

T i(t, x) = αt max
j∈C(i)

xj + (1− αt) min
j∈C(i)

xj,

we have T (x) ≥ T (x∗) whenever x ≥ x∗. Furthermore, the monotonicity of T (τ, x) for all τ

and the definition of T t+τ,t(·) imply that T t+τ,t(·) is monotonic.

(b) By the definition of T (t, x), we have that T (τ, y) ≥ T (τ, y) for all non-negative natural

number τ and y. Subsequently, T (t, x) ≥ T (t, x) and T (t+ 1, T (t, x)) ≥ T (t+ 1, T (t, x)) for

all t. By combining these with the monotonicity of T (t, ·), we obtain that

T t,2(x) = T (t+ 1, T (t, x)) ≥ T (t+ 1, T (t, x)) ≥ T (t+ 1, T (t, x)) = T t,2(x).

One can extend the argument above and obtain that

T t,k(x) ≥ T t,k(x)

for each natural number k ≥ 1.

(c) Recall that θ satisfies the following condition: j ∈ Cθ(i) for all i, j ∈ A. We now show

that for any x,

min
j∈A

T t,θj (x) ≥ (1− αt,θ) min
j∈A

xj + αt,θ max
j
xj.

Let ī be an agent for whom xī = maxj∈A xj. We know that each i ∈ A listens to ī in

θ steps, i.e., ī ∈ Cθ(i). Let y be an opinion such that yi = minj∈A xj for all i 6= ī and

yī = xī = maxj∈A xj. Clearly, x ≥ y. Thus, by the monotonicity of T t,τ (·),

T t,τ (x) ≥ T t,τ (y)

for all τ . We now concentrate on T (t, y). If i does not listen to ī (i.e., if ī /∈ C(i)), then

T i(t, y) = minj∈A xj. On the other hand, if i listens to only ī (i.e., {̄i} = C(i)), then

T i(t, y) = yī = maxj∈A xj. If i listens to some other agents in addition to ī (i.e., {̄i} ⊂ C(i)),

then

T i(t, y) = (1− αt) min
j∈C(i)

yj + αt max
j∈C(i)

yj

= (1− αt) min
j∈A

xj + αt max
j∈A

xj.
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Let y1 be an opinion such that y1
i = minj∈A xj if ī /∈ C(i) and y1

i = (1− αt) minj∈A xj +

αt maxj∈A xj if ī ∈ C(i). Observe that T (t, y) ≥ y1 for all i. Thus, by the monotonicity of

T t,τ (·) for all τ , T t,2(x) ≥ T t,2(y) ≥ T (t+ 1, y1). We now turn our attention to T (t+ 1, y1).

If i does not listen to ī in two steps (i.e., if ī /∈ C2(i)), then T i(t + 1, y1) = minj∈A xj. On

the other hand, if i listens to ī in two steps (i.e., ī ∈ C2(i)), then

T i(t+ 1, y1) = (1− αt+1) min
j∈C(i)

y1
j + αt+1 max

j∈C(i)
y1
j =

≥ (1− αt+1) min
j∈A

xj + αt+1((1− αt) min
j∈A

xj + αt max
j∈A

xj)

= (1− αt,2) min
j∈A

xj + αt,2 max
j∈A

xj

Let y2 be an opinion such that y2
i = minj∈A xj if ī /∈ C2(i) and y2

i = (1−αt,2) minj∈A xj +

αt,2 maxj∈A xj if ī ∈ C2(i). Observe that T (t + 1, y1) ≥ y2. Thus, by the monotonicity of

T t,τ (·) for all τ , T t,3(x) ≥ T t,3(y) ≥ T t+1,2(y1) ≥ T (t+ 2, y2). We now turn our attention to

T (t + 2, y2). If i does not listen to ī in three steps (i.e., if ī /∈ C3(i)), then T i(t + 2, y2) =

minj∈A xj. On the other hand, if i listens to ī in three steps (i.e., ī ∈ C3(i)), then

T i(t+ 2, y2) = min
j∈C(i)

y2
j + αt+2

(
max
j∈C(i)

y2
j − min

j∈C(i)
y2
j

)
≥ (1− αt,3) min

j∈A
xj + αt,3 max

j∈A
xj.

By following the same procedure iteratively, let us define yθ−1
i . Observe that T (t + θ −

2, yθ−2) ≥ yθ−1. Thus, by the monotonicity of T t,τ for all τ , T t,θ(x) ≥ T t,θ(y) ≥ T t+1,θ−1(y1) ≥
· · · ≥ T t+θ−1,1(yθ−1) = T (θ−1, yθ−1). We now turn our attention to T (θ−1, yθ−1). We know

that each i listens to ī in θ periods. Thus,

T i(θ − 1, yθ−1) = min
j∈C(i)

yθ−1
j + αθ−1

(
max
j∈C(i)

yθ−1
j − min

j∈C(i)
yθ−1
j

)
≥ (1− αt,θ) min

j∈A
xj + αt,θ max

j∈A
xj

This means that mini∈A T
t,θ
i (x) ≥ (1 − αt,θ) minj∈A xj + αt,θ maxj∈A xj. By combining

this with (b) of this lemma, we obtain (c).
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Proof of Lemma 1. Parts b and c of Lemma 2 yield that

min
i∈A

T t,θi (x) ≥ (1− αt,θ) min
j∈A

xj + αt,θ max
j∈A

xj.

Similarly, one can show that

max
i∈A

T t,θi (x) ≤ βt,θ min
j∈A

xj + (1− βt,θ) max
j∈A

xj.

Consequently,

max
i∈A

T t,θi (x)−min
i∈A

T t,θi (x) ≤ (1− αt,θ − βt,θ)(max
j∈A

xj −min
j∈A

xj).

Proof of Theorem 1. Fix any x. Set x0 = x and xt = T 0,t(x) for all t ≥ 1. Now consider the

sequence {xt}. Let xt = mini∈A x
t
i and x̄t = maxi∈A x

t
i. To prove the theorem it suffices to

show limt→∞{x̄t−xt} → 0. Because Ti(τ, x) ∈ [minj∈A xj,maxj∈A xj] for all i and τ , {x̄t−xt}
is a non-increasing sequence. Thus, we only need to show that the distance between extremal

opinions converges to 0 for some subsequence. Let {tk} be a subsequence with tk+1− tk ≥ θ

for all k and limτ→∞
∑τ

k=1(αtk + βtk) = ∞. Because {x̄t − xt} is non-increasing and {tk}
satisfies tk+1 − tk ≥ θ for all k, Lemma 1 gives that for all τ ≥ 2,

x̄tτ − xtτ ≤ max
i∈A

T
tτ−1,θ
i (xtτ−1)−min

i∈A
T
tτ−1,θ
i (xtτ−1).

≤ (1− αtτ−1,θ − βtτ−1,θ) (x̄ττ−1 − xττ−1 .)

≤
τ−1∏
k=1

(1− αtk,θ − βtk,θ)
(
x̄0 − x0

)
.

Consequently, we complete the proof by showing that limτ→∞
∏τ

k=1(1 − αtk,θ − βtk,θ) → 0

when limτ→∞
∑τ

k=1(αtk + βtk) =∞. It is easy to see that for any τ ≥ 1,

τ∏
k=1

(1− αtk,θ − βtk,θ) ≤

(
1−

∑τ
k=1

(
αtk,θ + βtk,θ

)
τ

)τ

.

In addition,

lim
τ→∞

(
1−

∑τ
k=1

(
αtk,θ + βtk,θ

)
τ

)τ

≤ exp

(
−

l∑
k=1

(
αtk,θ + βtk,θ

))
∀l ∈ N.
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Furthermore, because liml→∞
∑l

k=1

(
αtk,θ + βtk,θ

)
= ∞, the previous three inequalities

give that

lim
τ→∞

τ∏
k=1

(1− αtk,θ − βtk,θ) = 0.
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