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“Slow-burn” Spillover and “Fast and Furious” Contagion: A Study
of International Stock Markets

Abstract

“Fast and furious” contagion across capital markets is an important phenomenon in

an increasingly integrated financial world. Different from “slow-burn spillover” or inter-

dependence among these markets, “fast and furious” contagion can occur instantly. To

investigate this kind of contagion from the U.S., Japan, and Hong Kong to other Asian

economies, we design a research strategy to capture fundamental interdependence, or

“slow-burn spillover”, among these stock markets as well as short-term departures from

this interdependence. Based on these departures, we propose a new contagion measure

which reveals how one market responds over time to a shock in another market. We

also propose international portfolio analysis for contagion via variance decomposition

from the portfolio manager’s perspective. Using this research strategy, we find that

the U.S. stock market was cointegrated with the Asian stock markets during the four

specific periods from July 3, 1997 to April 30, 2014. Beyond this fundamental inter-

dependence, the shocks from both Japan and Hong Kong have significant “fast and

furious” contagion effects on other Asian stock markets during the U.S. subprime crisis,

but the shocks from the U.S. have no such effects.

JEL Codes: C5, F3, G1

Keywords: stock markets, contagion, interdependence, international portfolio analysis
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1 Introduction

As globalization ushers us into the new millennium, international trade and capital markets

connect the world more than ever, information flows almost instantly around the world

(see Dooley and Hutchison (2009)), and investment strategies of investors tend to be more

diversified across the global financial markets (see Ng (2000)). What are the features of the

interconnection among stock markets? How could an international investment strategy be

affected by this interconnection?

In this paper, we investigate interdependence and financial contagion among eleven stock

markets based on daily data, focusing on the short term impact from the U.S., Japan, and

Hong Kong to other Asian economies1 during the period of July 3, 1997–April 30, 2014.2

Following Kaminsky et al. (2003) and Reinhart and Rogoff (2009), we refer interdependence

as “slow-burn” spillover across markets driven by common (external and internal) factors.

We view contagion as “fast and furious” shock waves across markets driven by information

cascade in the sense of Bikhchandani et al. (1992).

We are interested in investigating a number of interesting hypotheses. First, is it true that

after we have taken the long-run interdependence among different markets into account, we

still could not find any “fast and furious” contagion across these markets?3 Second, were the

U.S. stock market and the Asian stock markets segregated during the U.S. subprime crisis?4

Third, is contagion from the U.S. stock market different from that from the Japanese and

Hong Kong markets?

To identify the pattern and dynamics of “fast and furious” contagion across stock markets,

we have made two innovations. First, we propose a new measure of contagion beyond the

long-run interdependence. Second, we propose a new way of implementing international

portfolio analysis for contagion via variance decomposition.

This study differs from the existing studies in a number of different ways. First, we

study more updated data to find out how contagion channels from stock markets in some

1They are China, India, Indonesia, Korea, Malaysia, Singapore, and Taiwan. We also include the U.K.
stock market as an important stock market in the world so that our selection of the stock markets represents
the international stock markets well. In addition, we follow the sequence of the U.S. stock market—Asian
mature (Japan and Hong Kong) and other Asian stock markets—the U.K. stock market in our study.

2This paper extends the study by Ng (2000), which covers the period of 1975-1996.
3Dooley and Hutchison (2009) and Baele and Inghelbrecht (2010) could not find any evidence for conta-

gion.
4Reinhart and Rogoff (2009, p. 245) report that during the period of 2007–2008, the U.S., U.K., Japan

experienced financial crisis but Hong Kong, China, India, Indonesia, Korea, Malaysia, Singapore, and Taiwan
did not.
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key developed economies (the U.S., U.K., Japan, and Hong Kong) to other Asian stock

markets during the periods of major regional and global financial market events. This is of

particular interest as many of the existing studies focus on how contagion occurred among

mature stock markets (e.g., Hamao et al. (1990), King and Wadhwani (1990), Loretan

and English (2000), Baele and Inghelbrecht (2010)) or from Asian stock markets to more

mature stock markets prior to 2000 (Forbes and Rigobon (2002)). Witnessed the financial

crisis in the U.S. in 2009, we wish to study how contagion transmits from more mature

stock markets in the U.S., Japan, and Hong Kong to other Asian stock markets in Taiwan,

Singapore, Korea, Indonesia, Malaysia, China, and India.5

Second, in this paper we distinguish long-run interdependence among asset prices from

short-term departures around that long-run interdependence. The concept of contagion

evolves over time. In earlier studies, the differentiation of contagion from the long-run in-

terdependence is not distinct. For example, Dornbusch et al. (2000) define contagion as

“the spread of market disturbances—mostly on the downside—from one (emerging market)

country to the other.” Kaminsky and Reinhart (2002) suggest that contagion is shown as

“speculative attacks ... are bunched together across countries.” Forbes and Rogobon (2002)

define “contagion as a significant increase in cross-market linkages after a shock to one coun-

try (or group of countries).” However, the concept of contagion has been more refined lately.

For example, Kaminsky et al. (2003) also define contagion as “fast and furious” shock waves

while the conventional interdependence as “slow-burn” spillover.6 Bekaert et al. (2005) dif-

ferentiate fundamental linkages and deviations from these linkages and consider contagion as

“correlation over and above what one would expect from economic fundamentals.” Dungey

et al. (2010) refer to contagion as “distinct from crisis-driven changes in fundamental link-

ages.”7 We design an empirical framework for the more refined concept of contagion in this

paper.

Third, in this paper we propose (1) a modeling framework, which is consistent with

the common factor model, for capturing “slow-burn” spillover among asset prices, (2) a

new measure for “fast and furious” contagion, and (3) a new approach for implementing

international portfolio analysis for contagion via variance decomposition. As Baele and

Inghelbrecht (2010) point out, the identification of contagion defined above depends critically

5Ng (2000) works on volatility spillover from the U.S. and Japan to other Asian countries.
6We use the spillover concept to refer to interdependence across different markets over different time

zones.
7Please see an excellent survey on contagion by Pericoli and Sbracia (2003) and see a study on a domino

effect by Markwat et al. (2009).
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on the models used to capture fundamental dependence. Following Bekaert et al. (2005),

Baele and Inghelbreht (2010) use a less restricted time-varying multi-factor model and do

not find any evidence of contagion. Therefore, it is critical to consider the fundamental

interdependence and comovements as well as any pattern and dynamics of contagion in

these stock markets.

We have the following interesting findings. First, using cointegration models we find the

time-varying “slow-burn” spillover effects among these stock markets. Although, during the

U.S. subprime crisis, the U.S. stock market was highly cointegrated with the Asian stock

markets, the shock from the U.S. stock market did not have any “fast and furious” contagion

effect on the Asian stock markets. Second, there were significant “fast and furious” contagion

effects from both the Japanese and Hong Kong stock markets to other Asian stock markets

beyond the “slow-burn” spillover effects. Third, we find significant overreactions of other

Asian stock markets to the shocks from the Japanese and Hong Kong stock markets but

marked underreactions to the shock from the U.S. stock market during the subprime crisis.

Fourth, our international portfolio analysis for contagion also confirms the role that the

Japanese and Hong Kong stock markets play to other Asian stock markets. In addition to

the above findings, we note that capital controls used in, and net equity investment flows

across, these markets may offer some plausible explanations for the existence, or lack thereof,

of “fast and furious” contagion.

The research work done in this paper is relevant to the real world need for risk measure

and management in the context of global investment. The flexible approach for identifying

cointegration relations can be used to evaluate the comovements in these markets during

significant regional and global financial market events. Our contagion measure can be used

to find the contagion effect of one market to another beyond long-run interdependence. We

can use the portfolio approach to further evaluate the role of contagion in portfolio risk

measure and management.

The remainder of this paper is organized as follows. Section 2 introduces our modeling

framework, new contagion measure, and new international portfolio analysis. Section 3 de-

scribes the data used in this research, summary statistics and crash transition probabilities.

Section 4 presents the empirical analysis, including the cointegration analysis, SVAR anal-

ysis of shocks across stock markets, contagion analysis and international portfolio analysis.

Section 5 concludes.
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2 Research Methodology

2.1 Characterization of data generating process

Bekaert et al. (2005) and Pukthuanthong and Roll (2009) show the stock market returns are

influenced by a set of common factors. We further find that for any two stock market prices

to be cointegrated, they must also be governed by the same stochastic trend and be perturbed

by the common/correlated shocks.8 Over the last few decades, the cointegration relations

among markets are changing (see Bekaert and Harvey (1995) and Brada et al. (2005))9 and

becoming increasingly strong among close related stock markets during significant regional

and global financial market events (de Jong and de Roon (2005)). Hence, we use the rolling

cointegration technique developed by Hansen and Johansen (1999) to identify episodes of

stable cointegration relations among stock markets. We use Fukuda’s method (2011) to

check the robustness of these episodes by finding out the change of the number of stable

cointegration relations.10 This strategy allows us to identify current market interdependence,

often referred to as “slow-burn” spillover, even in the context of structural changes.11

To describe the data generating process, long-run dependence and contagion, let pt =

[p1,t, p2,t, . . . , pn,t]
′ denote an n×1 vector of n market portfolio prices (in log). Hence, returns

on the n stock market portfolios, ∆pt, can be cast in a vector autoregressive (VAR) model,

which has a multivariate moving average (MA) or Wold representation:

∆pt = Ψ(L)et = et + Ψ1et−1 + Ψ2et−2 + · · · , (1)

where Ψ(L) =
∑∞

k=0 ΨkL
k with Ψ0 = I. Ψ(L) is an n×n polynomial matrix in lag operator

L. The error terms in et are, in general, not orthogonal to each other, as there may be non-

zero correlation between contemporaneous error terms. Ψ(L) maps historical error terms,

et, et−1, et−2 . . ., of the model into the current returns ∆pt.

We are interested in structural innovations in vt, combinations of which appear as error

8For the theoretical work and simulation on this, see Appendix A.
9Chan et al. (1992) and DeFusco et al. (1996) find no cointegration relations in, and between, mature

and emerging stock markets. Darrat and Zhong (2002) find cointegration between the U.S. (but not Japan)
and other Asian countries. Bessler and Yang (2003) find the linkages among mature stock markets.

10Martins and Gabriel (2013) attempt to use the regime-switching model to deal with “interrupted”
cointegration relations.

11Bekaert et al. (2005) use the correlations of lagged stock market returns as the market linkages for
identifying current contagion whereas we employ the current cointegration relations among stock market
indices for identifying current contagion.
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terms in et, as well as causal chains among structural innovations. We use Aet = Bvt,

where A and B are both n×n matrices, to link innovations to error terms. As the structural

innovations in vt are orthogonal to each other, B is a diagonal matrix with diagonal elements

being the standard deviations of structural innovations. A characterizes contemporaneous

correlations among the error terms. Therefore, we obtain

et = A−1Bvt. (2)

Substituting equation (2) into equation (1) yields

∆pt = Ψ(L)et = Ψ(L)A−1Bvt. (3)

We use the structural VAR (SVAR) analysis to investigate the contemporaneous infor-

mation transmission among multiple stock markets12 based on the short-term departures

from the long-run cointegration relations.13 In this paper, we use the directed acyclic graph

(DAG) method to identify the contemporaneous information transmission among these stock

markets14 and the pattern and dynamics of “fast and furious” contagion across stock mar-

kets.15

According to the Granger Representation Theorem (see Engle and Granger (1987)), the

n market portfolio prices in pt are said to be cointegrated with rank r if Ψ(1) is of rank

(n−r), and there exist two n×r matrices, α and β, both of rank r, such that β′Ψ(1) = 0 and

Ψ(1)α = 0. The columns of β are the cointegrating vectors and the columns of α contain

the error correction coefficients.16

Now we explain the long-run pricing impact and related pricing error. Define G =[
α′⊥

β′

]
, where β′ is a r × n matrix and α′⊥ is an (n − r) × n matrix satisfying α′⊥α = 0.

12Most other studies concerning contagion are based on bivariate analyses, and do not investigate interde-
pendence in a multivariate environment (see, for example, Forbes and Rigobon (2002), Boyer et al. (2006),
Rodrigues (2007), and Fazio (2007)).

13Although the importance of contemporaneous information transmission among stock markets is well
recognized, more studies focus on non-contemporaneous information transmission (see Eun and Shim (1989)
Bessler and Yang (2003), and Dungey et al. (2010)).

14The DAG method is used by Swanson and Granger (1997) to analyze causal chains of VAR residuals.
Chen and Hsiao (2007) show that time series causal models based on the DAG are consistent to structural
VAR models.

15We also use (1) normalization (assigning 1 to the focal market) in matrix A and (2) the time-zone and
end-of-business-day differences to identify the structural VAR (see Kleimeier et al. (2008)).

16Note that the cointegration relations under consideration in this study have no deterministic components,
which lie outside the cointegrating space in the sense of Johansen (1991).
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Using G, we can rewrite ∆pt as

∆pt = Ψ(L)G−1GA−1Bvt (4)

=
[

D1(L) D2(L)
] [ α′⊥

β′

]
A−1Bvt

= D1(L)α′⊥A−1Bvt + D2(L)β′A−1Bvt

= D1(1)α′⊥A−1Bvt︸ ︷︷ ︸
long-run pricing impact denoted as Φvt

+ [D1(L)α′⊥A−1B − D1(1)α′⊥A−1B + D2(L)β′A−1B]vt︸ ︷︷ ︸
pricing error denoted as Φ∗(L)vt with Φ∗(1)vt=0

,

where D1(L) contains the first (n − r) columns of Ψ(L)G−1 and D2(L) contains the last

r columns. We decompose ∆pt into long-run pricing impact and pricing error. The total

price impact of vt on ∆pt is Φvt +Φ∗(0)vt, in which the long-run pricing impact is Φvt and

Φ∗(0)vt is the pricing error given Φ∗(1)vt = 0, which will be corrected if given a long-enough

period.17

2.2 Contagion measure

To discuss how to measure “fast and furious” contagion, we propose our contagion measure.

Let Φi,j (Φ∗i,j) be the i, j-th element of Φ (Φ∗). We can evaluate “fast and furious” contagion

from market j to market i using Ci,j:

Ci,j =

(
Φi,j + Φ∗(0)i,j
Φj,j + Φ∗(0)j,j

)2

−
(

Φi,j

Φj,j

)2

. (5)

The first term of the right-hand side of equation (5) measures the total cross-market pricing

impact from market j to market i (Φi,j +Φ∗(0)i,j) relative to the total within-market pricing

impact from market j to itself (Φj,j+Φ∗(0)j,j). The total pricing impact has two components

as explained before: long-run pricing impact (Φi,j, Φj,j) and pricing error (Φ∗(0)i,j,Φ
∗(0)j,j).

The second term of the right-hand side of equation (5) measures the cross-market long-run

pricing impact (Φi,j) relative to the within-market long-run pricing impact (Φj,j). If the

17 The formal proof can be found in Appendix B. Please note that the decomposition method used here is
different from the widely used permanent-transitory decomposition methods (such as Gonzalo and Granger
(1995) and Gonzalo and Ng (2001)), which may identify permanent and transitory shocks differently. In
the literature, an innovation having non-zero long-run effect on the level of pt is defined as a permanent
shock, otherwise it is defined as a transitory shock. However, a permanent shock combined with an arbitrary
transitory shock is still a permanent shock which has non-zero long-run effects. Hence, it is difficult to
identify a unique permanent shock.
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cross-market pricing error (Φ∗(0)i,j) is greater in proportion than the within-market pricing

error (Φ∗(0)j,j) in the context of the cross-market long-run pricing impact relative to the

within-market long-run pricing impact, Ci,j will be significantly greater than 0. In this case,

shocks in market j lead to more volatility in market i. This is considered as the evidence

for contagion. If the cross-market pricing error (Φ∗(0)i,j) is smaller in proportion than the

within-market pricing error (Φ∗(0)j,j) in the context of the cross-market long-run pricing

impact relative to the within-market long-run pricing impact, Ci,j will be significantly less

than 0. In this case, shocks in market j lead to little volatility in market i. This is considered

as the evidence against contagion.

2.3 International portfolio analysis for contagion

To understand and manage the risk of contagion from the perspective of international portfo-

lio investment, we propose international portfolio analysis for contagion via variance decom-

position of the corresponding vector error-correction models (VECMs) (see equation (4)).

Using this method, we can trace the portion of the international portfolio return variance

to external shocks from some markets, assets of which are not included in this international

portfolio. The variance decomposition proposed here can show whether the contemporane-

ous transmission of external shocks exacerbates or reduces the volatility of the international

portfolio return. Therefore, this decomposition can shed more light on “fast and furious”

contagion beyond the fundamental interdependence and on risk measurement and manage-

ment via portfolio diversification across many markets.

To explain our variance decomposition, denote the 1-step ahead conditional forecast error

variance as Vp, the efficient price volatility as Ve
p, and the difference between them as εp

(that is, Ve
p + εp = Vp). To define Vp and Ve

p, we need the vector of international market

portfolio weights w,18 which can be determined in an ad hoc way or via an optimization

procedure. Using the variance of et = A−1Bvt and the definition of w, we obtain the total

portfolio variance,

Vp = w′[A−1B][A−1B]′w. (6)

Using the variance of the long-run impact in equation (4)—Φvt—and the definition of w,

18In this study, if we study the external shock from a market portfolio A on a composite market portfolio
which consists of market portfolios B, C, and E, we can assign the weight 0 to market portfolio A and equal
weights (1/3) to market portfolios B, C, and E

9



we obtain the efficient portfolio variance,

Ve
p = w′[D1(1)α′⊥A−1B][D1(1)α′⊥A−1B]′w. (7)

When Vp departs from Ve
p, we can interpret the departure εp as follows. An εp value greater

than 0 implies a crisis deteriorating case for the international portfolio variance while a εp

value less than 0 implies a crisis recuperating case for the international portfolio variance.

A zero εp indicates a crisis neutral case for the international portfolio variance.

Our approach has the following interpretation. If the contemporaneous information trans-

mission of external shocks is efficient in the sense that all the markets can fully reflect this

information instantaneously, then the 1-step ahead conditional forecast error variance for the

market portfolio return should approach the efficient portfolio variance given by the evolu-

tion of price processes.19 In contrast, inefficient contemporaneous information transmission

among markets can exacerbate or reduce the total variance of the market portfolio return

causing departures from the efficient portfolio variance.20

3 Data, Summary Statistics, and Crash Transition Prob-

abilities

3.1 Data

The data used in this study consist of the daily market index prices21 of the eleven stock

markets for the period from July 3, 1997 to April 30, 2014. During this period, a series

of significant regional and global financial market events, such as southeast Asian financial

crisis (1997), the tech bubble (2001), subprime crisis (2007), and American financial tsunami

(2008), occurred. All of these events lead to the major crashes in the U.S. stock market and

other stock markets. The data cover four major mature stock markets including the U.S.,

U.K., Japanese and Hong Kong markets and seven Asian stock markets including the Tai-

wanese, Singaporean, Korean, Indonesian, Malaysian, Chinese, and Indian markets. Their

market indices are the U.S. S&P 500 (US), U.K. FT 30 (UK), Japan Nikkei 225 (JP), Hong

Kong Hang Seng (HK), Taiwan Stock Exchange Weighted (TW), Singapore Strait Times

19Please see Frijns and Schotman (2009) for the definition of an efficient price volatility.
20The contemporaneous information transmission reflects the underlying institutional arrangement and

regulatory coordination that manage external shocks.
21The prices are closing prices. All stock market indices are measured in home-country currencies.
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(SG), Korea Stock Exchange Composite (KR), Indonesia Jakarta Stock Exchange Compos-

ite (IN), Malaysia Kuala Lumpur Composite (ML), China Shanghai Composite (CN), and

India Bombay Stock Exchange 30 (ID).22

(Please place Table 1 about here)

3.2 Summary statistics

Panel A of Table 1 provides the summary statistics of daily stock returns for the full sample

period including mean, volatility, minimum, maximum, and 10th quantiles. These summary

statistics show that relative to the more mature stock markets (the U.S., U.K., Japanese,

and Hong Kong stock markets), other Asian stock markets, in general, have higher volatility

but have higher annualized average returns. Table 1 also reports, in the fifth row, the 10%

quantile measures of the empirical return distributions of the market indices, which are used

in calculating crash transition probabilities in Panels B and C of Table 1.23

3.3 Crash transition probabilities

Panel B of Table 1 shows the crash transition probabilities in some specific markets, given

the occurrence of crashes in the U.S., Japan and Hong Kong, respectively, during the full

sample period of July 3, 1997–April 30, 2014. More specifically, Panel B of Table 1 lists

the crash transition probabilities in non-U.S. markets conditional on the U.S. crash, the

Japan crash, Hong Kong crash, Japan and U.S. crashes, and Hong Kong and U.S. crashes,

respectively. The last column of Panel B of Table 1 reports the average of crash transition

probabilities of other Asian stock markets. Panel B of Table 1 shows that the average crash

transition probability from the U.S. is 28.35%, while those from Japan and Hong Kong are

33.48% and 42.59%, respectively. Conditional on both the Japan and U.S. (Hong Kong and

U.S.) crashes, the average crash transition probability is 45.58% (49.95%). To make sense

22In any study involving the analysis of daily stock market data across major continents in the world, it
will inevitably encounter the problem of international trading nonsynchronism. That is, international stock
markets operate in different time zones and the data for the same trading calendar day may occur at different
point in time. In particular, as trading on a given calendar day starts in Asia and ends in the U.S., a piece of
information occurring in the U.S. stock market on a calendar day is available to Asian markets on the next
calendar day. To truly study the contagion from the U.S. market, we shall align the data from the U.S. as
the starting point. That is, the data for the U.S. are aligned with the data next day in Asian stock markets.

23Bae et al. (2003) and Markwat (2009) suggest that a crash in a given market occurs when the daily
return lies below a certain quantile of the empirical return distribution over the full sample period. Among
the choices of theirs—1%, 5% and 10% quantiles, we use the 10% quantile as it is more restrictive as to what
constitutes a crash.
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of these average crash transition probabilities, we note that if all markets are independent,

these probabilities would be 10%. Clearly, these markets are interdependent as all these

probabilities are at least double and quadruple the 10% benchmark. In addition, crash

transition probabilities in other Asian stock markets tend to be higher conditional on the

crashes in Japan and Hong Kong.

Panel C of Table 1 is organized similarly as Panel B but for the U.S. subprime crisis

during the period of June 4, 2007–January 25, 2008. During this period, the average crash

transition probability in seven Asian stock markets conditional on the U.S. crash increases

from 28.35% to 33.57%, while the average crash transition probabilities conditional on the

Japan crash and Hong Kong crash increase substantially from 33.48% to 58.93% and from

42.59% to 59.40%, respectively. To find out why these dramatic changes occurred during the

U.S. subprime crisis, we note that the crash transition probability in Singapore conditional

on the U.S. crash is 40.00% but this probability increases to more than 75% following the

consecutive crash in Japan or Hong Kong. The similar observations emerge for other Asian

stock markets. It appears that there is a discernible secondary order effect of the Japan and

Hong Kong stock market crashes after the U.S. stock market crash on other Asian stock

markets during the U.S. subprime crisis.

In Table 1, the fourth column of Panels B and C reports the crash transition probabilities

of the Japanese stock market conditional on the U.S., Hong Kong, and Hong Kong and U.S.

stock market crashes, respectively. The fifth column lists the crash transition probabilities

of the Hong Kong stock market conditional on the the U.S., Japan, Japan and U.S. crashes,

respectively. During the full sample period (see Panel B), the crash transition probabilities

of Japan and Hong Kong conditional on one another and on the U.S. range from 45.20%

to 64.89%. However, during the U.S. subprime crisis (see Panel C), these crash transition

probabilities are higher, ranging from 63.16% to 75.00%. These crash transition probabilities

(in Panels B and C) demonstrate a domino effect, where the U.S. crash causes the crashes in

Japan and Hong Kong, which in turn lead to widespread crashes in other Asian stock markets.

This domino effect may reflect the contagion effect, or interdependence, or both. Therefore,

it is desirable to further investigate the transmission mechanism behind this domino effect.
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4 Empirical Results

4.1 Interdependence and cointegration analysis

To identify the time-varying interdependence, or “slow-burn” spillover, among these stock

markets, we use our prior knowledge about significant regional and global financial market

events24 and the rolling cointegration analysis for stable cointegration relations developed by

Hansen and Johansen (1999),25 and Fukuda’s (2011) method for a regime switching point in

the number of cointegration rank.

Using the rolling cointegration analysis with different window widths (1, 2, 3 years), we

can see that there are four prominent episodes of cointegration relations among the eleven

stock markets. When we combine this finding with significant regional and global financial

market events, we find that when significant regional and global financial market events

occurred in episodes 1, 2, and 4, cointegration relations strengthened and could last for as

long as about three years. In episode 3, however, cointegration relations strengthened before

the subprime crisis occurred and these relations weakened after the subprime crisis occurred.

In order to check the robustness of the findings, we use the significant events as the starting

points for episodes 1, 2, and 4 but as the ending point for episode 3. Then we use Fukuda’s

(2011) method to find a regime switching point of the number of cointegration rank for the

other end of each episode.

Based on the above approaches, we find that while the eleven stock market indices (or

a subgroup of them) are not always cointegrated at all times, they do maintain long-run

interdependence (cointegration relations) during the following four periods: (1) August 24,

1998–August 10, 1999, (2) September 6, 2001–August 26, 2002, (3) December 21, 2006–May

9, 2008 and (4) October 28, 2008–November 20, 2009.

To show four cointegration periods of the eleven stock markets, we normalize the eleven

stock market indices to 1 on July 3, 1997. We note that the Thai baht’s collapse in July 1997

triggered a sequence of events in the Asian financial crisis. At the end of 1998, the Asian

crisis almost ended and Asian stock markets benefited directly from the robust intraregional

24As observed by Elyasiani and Kocagil (2001) about the currency markets, these are a number of cointe-
gration periods in which some major events in the national or global financial markets occurred. As noted
by Dooley and Hutchison (2009), the emerging markets were decoupled from the U.S. market before the sub-
prime crisis, but their linkages dramatically reemerged/recoupled by early 2008, with a remarkably uniform
timing across most of the emerging markets.

25We use trace tests over one, two, and three year windows to ensure flexibility of the search although
Awokuse et al.(2009) use a two-year window for analysis of stock markets while Brada et al. (2005) use a
five-year window for analysis of macroeconomic time series.
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trade and increasing investments in Asia.

Period 1 (August 24, 1998–August 10, 1999) is characterized by increasing trends among

eleven stock markets as shown in Figure 1. Among these stock market indices, those in

Singapore, China and India demonstrated strong increasing trends but the U.S. S&P stock

market index had a major crash, marked by the vertical bar, in August 31, 1998.

Period 2 (September 6, 2001–August 26, 2002) is characterized by a relatively stable trend

as shown in Figure 2. This period also witnessed the Argentina crisis and the 9-11 terrorist

attack in 2001, marked by the vertical bar. The 9-11 terrorist attack severely interrupted the

financial markets and caused market closure until September 17, 2001. Among these stock

markets indices, those in Japan, Singapore, and China experienced even more rapid falls.

Period 3 (December 21, 2006–May 9, 2008) is characterized by severe volatility and

changing tides in the stock markets as shown in Figure 3. During this period, the U.S.

subprime crisis occurred. Two vertical bars are used to highlight the huge crashes on August

16, 2007 and January 21, 2008, respectively. During this period, Asian stock markets such

as those in Hong Kong, Korea, Indonesia, India, and China experienced a good run relative

to other more mature stock markets. As the subprime crisis started, no markets, including

the Asian stock markets, could be immune to such a crisis.

As shown in Figure 4, period 4 (October 28, 2008–November 20, 2009) is characterized

by the comovement of the markets’ bottoming, highlighted by a vertical bar, on March 9,

2009 and then reversing their bearish trends onwards although these upward moves after the

bottom varied and were not smooth.

(Please place Figures 1–4 about here)

Although our data start from July 3, 1997 and end on April 30, 2014, we do not find

any additional period of stable cointegration relations from the end of period 4 to April 30,

2014.

The subsequent cointegration analysis is conducted on the stock market indices during

the four periods. Table 2 report the estimation results and test results of the vector error

correction models without any constant, trend, or lagged dependent variables, which are

chosen based on the Akaike information criterion. In the Panel C of Table 2, we report

the Johansen trace tests, the log-likelihood function values, and the AIC values. The test

statistic in the bold font indicates that the chosen number of cointegrating vectors cannot be

rejected at the 5% signnificant level. The p-value of the test statistic is given in the brackets.

According to these test results, we find one cointegration relation in periods 1 and 4 and
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two cointegration relations in periods 2 and 4. If there is only one cointegrating vector,

it is normalized for the U.S. stock market; if there are two cointegrating vectors, they are

normalized for the U.S. and Japanese stock markets, respectively.

(Please place Table 2 about here)

In Panel A of Table 2, the coefficient estimates of cointegrating vectors across the four

periods confirm the existence of time-varying cointegrating relations among most stock mar-

kets, since some coefficient estimates in the cointegrating vectors are positive in some periods

but some are negative in others. However, when the U.S. stock market is normalized to one,

there are negative coefficients for the U.K. stock market during periods 1, 2, and 3, which

implies that the U.S. and U.K. markets move in tandem. When the Japanese stock market

is normalized in period 2, the U.K. and Japan markets move in tandem in period 2 but in

the opposite directions in period 3. The coefficient estimates of cointegrating vectors show

that the Hong Kong market and U.S. market move in tandem in period 1 but in the oppo-

site directions in periods 2 and 3. Overall across the four periods, the eleven stock markets

studied in this paper show some significant cointegration relations. These relations represent

the stable interdependence within each of the four periods.

In Panel B of Table 2, the adjustment coefficient estimates also change over time, re-

flecting the fact that the long-run relations among these stock markets may change across

periods. These adjustment coefficient estimates indicate the directions and magnitudes of

adjustments in the relevant stock markets to maintain the cointegrating relations with other

stock markets. For example, positive (or negative) adjustment estimates suggest that the

corresponding markets must make positive (or negative) adjustments to keep pace with

those cointegrated markets. Similarly, large (or small) adjustment estimates suggest that

the corresponding markets must make large (or small) adjustments to keep pace with those

cointegrated markets. Large adjustment coefficient estimates in period 2 for Hong Kong and

Singapore suggest that these stock markets are hyper sensitive to the 9-11 terrorist attack

in the U.S. to maintain the long-run interdependence. Large adjustment coefficient esti-

mates in period 3 for Indonesia, China, and India suggest that these stock markets are hyper

sensitive to the turbulent U.S. market during the subprime crisis to maintain the long-run

interdependence. We will analyze this further in the following sections.

Panel D of Table 2 reports the linear restriction tests for the cointegrating vectors. The

evidence indicates that our cointegrating vectors reported in Panel A of Table 2 are sup-

ported by the data. Panel D of Table 2 also report the LM test statistics for multivariate
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autocorrelation of order one in the residuals of the vector error correction models and for

univariate autocorrelation of order one, two, and three in the residuals of the single coin-

tegration relations. Further, Panel D reports the LM test statistics for ARCH effects of

order one, two, and three in the residuals of the single cointegration relations. Although we

find little evidence of autocorrelation in these residuals, we do find that the residuals have

demonstrated some ARCH effect of order two and three in period 3 and the ARCH effect of

order three in period 2. This is consistent with the findings based on ARCH/GARCH models

in Bekaert et al. (2005) and Baele and Inghelbreht (2010). This is a clue of contagion in

these two periods. Hence, we need to rely on useful prior information to identify structural

shocks from these residuals.

4.2 SVAR analysis

In this section, we use the SVAR model to analyze the innovations of the multivariate cointe-

gration model for the eleven stock markets with a set of suitable identification restrictions.26

To obtain suitable restrictions, we use normalization, prior knowledge, and causation

implied by the data. Some restrictions are made based on normalization, for which we set

the diagonal elements of A to 1. Some restrictions are made according to prior knowledge.

First, matrix B is a diagonal matrix, we impose zero restrictions on all off-diagonal elements.

Second, in this study, a trading day starts from the U.S. and ends in the U.K.27 Hence, in

the same trading day, the U.S. market cannot be affected by the markets which open later

than the U.S. market does (in this case, Asian and U.K. markets). Because of such prior

knowledge, we impose zero restrictions on A for such impossible interdependence.

In addition to normalization and prior knowledge, we use the directed acyclic graph

(DAG) to identify the remaining suitable zero restrictions that may be imposed on A.28

DAGs are used to get the information about zero unconditional correlation or zero partial

correlation (conditional correlation) between variables in a system. If, according to DAGs,

innovations in one market have no statistical linkage with innovations in another market, we

26In our SVAR model, we need to estimate two n × n matrices A and B in et = A−1Bvt. Since
AΣA′ = BB′, the expressions on both sides of this equation are symmetric, we need to impose n(n + 1)/2
restrictions on the 2n2 unknown elements in A and B. Therefore, in order to identify A and B, we need to
supply at least 2n2 − n(n + 1)/2 = n(3n− 1)/2 additional restrictions.

27We have also studied a trading day starts from the U.K. and ends in India. As the U.S. stock market is
the largest one among all the eleven markets and had significant regional and global financial market events,
we design the trading day as such to better isolate the U.S. as the significant source of contagion.

28The implementation of the DAG in this paper can be found in Appendix C. See Spirtes et al. (2000)
and Pearl (2000) for more information on the directed acyclic graph.
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can impose a zero restriction between the two markets in A.29

Based on the estimated matrix A, we then calculate the i, j-th element of the estimated

matrix A−1B, (A−1B)ij, which shows how much market i instantaneously responds to a

structural innovation from market j.30 Table 3 shows how much different markets instanta-

neously respond to a structural innovation from the U.S., Japanese and Hong Kong markets.

The U.K., Japan, Hong Kong, and Singapore show the largest mean responses to the U.S.

shocks at the level of 0.0085, 0.0076, 0.0093, and 0.0076, respectively. The Hong Kong,

Singapore and Korea show the largest mean responses to Japanese shocks at the level of

0.0102, 0.0081, and 0.0081, respectively. Singapore, Indonesia, India, and Korea show the

largest mean responses to the Hong Kong shocks at the level of 0.0101, 0.0075, 0.0075, and

0.0074, respectively. China responds with relatively small magnitudes to the shocks from

the U.S., Japanese, and Hong Kong shocks. Except in period 1, Malaysia behaves similarly

as China does. In general, other Asian stock markets show greater responses to the shocks

from Japan and Hong Kong during each of the four periods. Even during the U.S. subprime

crisis (in Period 3), the contemporaneous mean effects of the shocks from Japan (0.0085)

and Hong Kong (0.0065) on other Asian stock markets are still greater than those from the

U.S. market (0.0061). In contrast to the findings that other markets are most sensitive to

the innovations from the U.S. market (e.g. Yang and Bessler (2008)), we find that, as shown

in Table 3, other Asian stock markets are quite responsive to the shocks from Japan and

Hong Kong showing an instantaneous shock transmission among these Asian stock markets.

(Please place Table 3 about here)

To further evaluate the instantaneous shock transmission, we test the null hypothesis

that the initial impact is equal to the long-run impact for each shock source in each period.

This null hypothesis represented by the restriction β′A−1B = 0 can be tested by a likelihood

ratio test. This test statistic follows a χ2-distribution with one degree of freedom for the case

of one cointegrating vector or with two degrees of freedom for the case of two cointegrating

vectors. These test results, given at the bottom of each panel of Table 3, show that the null

hypothesis can be rejected for all shock sources in period 3. In period 4, the null hypothesis

for shocks from the U.S. and Japan markets are also rejected. The departure of the initial

impact from the long-run impact is a sign of possible contagion in periods 3 and 4.

29DAGs are used in the literature for a similar purpose in related but distinctive time series settings such
as impulse response and forecast error variance decompositions. See, for example, Yang and Bessler (2008).

30We use one standard deviation as the unit of innovations.
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4.3 Contagion analysis

To analyze “fast and furious” contagion, we use the contagion measure Ci,j given by equation

(5). We want to find out whether or not U.S. crashes cause crashes in the Japanese, Hong

Kong and other Asian stock markets, and whether or not crashes in the Japan and Hong

Kong stock markets further cause crashes in other Asian stock markets. We report the

relevant results in Table 4.31

(Please place Table 4 about here)

Panel A of Table 4 shows that there is little or weak contagion effect from the U.S. to

Japan and Hong Kong in the four periods. The mean contagion measure from the U.S. to

other markets Ci,US is negative for each of the four periods, suggesting that during these

periods there is little contagion from the U.S. to other Asian stock markets after taking

into account the long-run interdependence. This finding is similar to that of Baele and

Inghelbrecht (2010) and Bekaert et al. (2011)—there is little evidence for the contagion

from the U.S. to European countries during times of financial crisis. It is notable that the

mean contagion measure from the U.S., Ci,US, for Period 3 (-1.4117; see Panel A of Table 4,

Period 3) is significantly smaller than that for the other three periods indicating that these

Asian markets maintain their recuperating capability during a crisis.

The contagion effect from the U.S. to Taiwan, CTW,US, is 0.0324 in Period 1 (see Panel

A of Table 4, Period 1) and 0.0886 in Period 4 (see Panel A of Table 4, Period 4). The

contagion effect from the U.S. to Hong Kong, CHK,US, is 0.1717 in Period 2 (see Panel A of

Table 4, Period 2). However, these effects are relatively small compared to those from Japan

and Hong Kong to other Asian stock markets.

There is no significant contagion effect from the U.S. to Japan, from Japan to Hong Kong,

and from Hong Kong to Japan, respectively in all periods. Even during the U.S. subprime

crisis (in Period 3), we cannot find any “fast and furious” contagion effect among the U.S.,

Japan, and Hong Kong. As we can recall, however, during the U.S. subprime crisis (Period

3), the fundamental interdependence, or “slow-burn” spillover, exists among the U.S. and

Japan and Hong Kong as illustrated by the crash transition probabilities conditional on the

U.S. crash (Panels B and C of Table 1). The fundamental interdependence among these

markets is also shown by the cointegrating vectors (see Panel A of Table 2 for Period 3).

31Nevertheless, we find that almost no contagion effect is found between other Asian stock markets for all
integration periods. This fact renders it unnecessary to report the contagion measures between any pairs of
other Asian stock markets. These estimation results can be found in Appendix D.
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More specifically, we find that the Hong Kong stock market is cointegrated with the U.S.

stock market and that the Hong Kong stock market is cointegrated with the Japanese stock

market. These findings reveal the complexity of the linkages during crises.

In contrast to the findings given above, we note some evidence for the contagion effect

from the Japanese and Hong Kong stock markets to other Asian stock markets during the

U.S. subprime crisis and after-crisis markets’ bottoming (see Panels B and C of Table 4,

Periods 3 and 4). The contagion effects are positive and large in magnitude. The mean

contagion measure from Japan to other Asian stock markets, Ci,JP , is valued at 0.2110 and

0.0428 in Periods 3 and 4, respectively, while that from Hong Kong to other Asian stock

markets, Ci,HK , is valued at 0.0961 in period 3. In Period 4, only Singapore and Korea, but

not other Asian markets, are affected by the contagion effect from Hong Kong. The Chinese

stock market is relatively closed to the outside world and hence is not significantly affected

by the contagion effects from the U.S., Japan, and Hong Kong. The Indian stock market,

however, is affected most by the contagion effect from Japan (0.4112; see Panel B of Table

4, Period 3) in Period 3 and by the contagion effect from Hong Kong (0.2315; see Panel C

of Table 4, Period 3).

In summary, in addition to the fundamental interdependence across these stock markets

(from the U.S. stock market to other Asian stock markets), contagion does occur immediately

across some of these markets in a domino fashion triggered by the fundamental interdepen-

dence (from the U.S. to Hong Kong and from Japan to Hong Kong). However, the structural

innovations from the Japanese and Hong Kong stock markets do not directly feedback to

the U.S. stock market on the same day in Period 3.

Kaminsky et al. (2003) and Reinhart and Rogoff (2009) note that the trade integration

and trade patterns do not necessarily lead to contagion from one country to another. Because

we study contagion across stock markets, it seems to be natural to examine the capital flows

among, and capital controls by, the markets we study. According to the Chinn-Ito Financial

Openness Index in Table 5 (see Chinn and Ito (2008)) for the period of 1997–2009,32 the U.S.,

U.K., Japan, Hong Kong, and Singapore are ranked highest in financial openness. Indonesia,

Malaysia and Korea are ranked moderate. The lowest ranked are China and India.

(Please place Table 5 about here)

32This index combines various pieces of information about the capital account openness. The higher
(lower) the index value, the more (less) open an economy is. Chinn and Ito (2008) do not rank Taiwan.
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If we examine the net equity investments into each market during the period of 1997–

2010 using the International Monetary Fund’s data,33 we find from Figure 5 that, during

the period of 2006-2009, the net equity investments into Japan fell substantially. During

the period of 2008-2009, the net equity investments into the U.S., U.K, and Korea also fell

substantially. However, during the entire period of 1997-2010, the net equity investments

into China, India, Indonesia, Malaysia, and Singapore did not change much. Against this

trend, the net equity investments into Hong Kong increased during the period of 2008–2010.

4.4 International portfolio analysis

To further evaluate the impact of contagion from the U.S., Japanese, and Hong Kong stock

markets on other Asian markets as a whole, we first form a portfolio that weights other

Asian stock markets equally. We then track the impact of the shocks from the U.S., Japan

and Hong Kong on the return volatility of this portfolio. Therefore, w in equations (6) and

(7) is an 11 × 1 vector of portfolio weights, in which we set 0 for the U.K., the U.S., Japan

and Hong Kong, and 1/7 for each of other Asian stock markets. This international portfolio

can be used to analyze the volatility of the international portfolio induced by shocks from

the U.S., Japanese and Hong Kong stock markets. This is an effective way to examine the

contagion risk in targeted portfolios.

Table 6 reports the results of variance decomposition. Panel A of Table 6 provides the

estimated efficient price volatility, Ve
p, and the estimated departure of the 1-step ahead

conditional forecast error variance Vp from Ve
p, εp, for the entire portfolio. The third rows

(Vp,US,Vp,JP , and Vp,HK) of Panels B, C and D of Table 6 show the forecast error variance

decomposition for portfolio returns affected by the U.S., Japanese and Hong Kong shocks,

respectively. In addition, the last rows (Vp,US/Vp,Vp,JP/Vp, and Vp,HK/Vp) of Panels B, C

and D show the percentages of the forecast error variance decomposition of portfolio returns

that are due to shocks from the U.S., Japan and Hong Kong, respectively. The first two

rows (Ve
p,j and εp,j) in Panels B, C and D of Table 6 provide the estimated efficient portfolio

variance and departure from it, respectively.

(Please place Table 6 about here)

According to the results in Table 6, we find that the shocks from the U.S., Japan, and

Hong Kong account for a significant and increasing proportion of the forecast error variance

33The data for Taiwan are not available.
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of portfolio returns over time. Compared to the U.S. shock, the shock from Hong Kong

(Panel D of Table 6) has a greater impact on the variance of portfolio returns in all four

periods. Similarly, compared to the U.S. shock, the shock from Japan (Panel C of Table 6)

also has a greater impact in periods 2, 3, and 4. In particular, in Period 3, the shock from

Japan contributes close to 35% of the variance of portfolio returns. In addition, from Period

1 to Period 4, the shocks from the U.S., Japan and Hong Kong account for an increasing

proportion of the variance of portfolio returns over time. That is, from Period 1 to Period

4, the proportion of the variance due to the U.S., Japanese, and Hong Kong shocks ranges

from 12.88% to 19.43%, from 2.12% to 25.59%, and from 19.80% to 32.85%, respectively.

This evidence appears to confirm that, over time, other Asian stock markets were gradually

integrated into the more mature stock markets. Our study further confirms the finding of

Ng (2000) and shows that Asian stock markets are further integrated into the global stock

markets.

In Panels C and D of Table 6, we highlight some numbers in the bold font in Period 3,

which indicate that the shocks from the Japanese and Hong Kong stock markets increase the

variance of portfolio returns by 0.000050 and 0.000027, respectively. However, the shock from

the U.S. stock market decreases the variance of portfolio returns by 0.000069. Combining

these with the findings in our SVAR analysis, we conclude that during the U.S. subprime

crisis, other Asian stock markets appear to be less affected by contagion from the U.S. but

more influenced by their long-run interdependence on the U.S. while they are more subject

to the contagion effects from Japan and Hong Kong.

5 Concluding Remarks

In this paper, we attempt to study the interdependence and contagion among the eleven

stock markets, examining whether there are contagion effects from the more matured mar-

kets such as the U.S., Japanese, and Hong Kong stock markets to other Asian stock markets.

To do so we must differentiate contagion from long-run interdependence and view contagion

as a departure from long-run interdependence. We adopt a research strategy in which the

long-run interdependence among these stock markets is captured by cointegration relations.

We find that there are four periods in which major regional and global financial market events

occurred and the eleven stock markets shared systematic comovements. This captures the

“slow-burn” spillover across the stock markets. Based on this framework, we propose a new

contagion measure to capture “fast and furious” shock waves across the stock markets. In

21



addition, we also propose international portfolio analysis for contagion via variance decom-

position. We use this approach to evaluate and manage contagion risk from the portfolio

management perspective.

We show that during the U.S. subprime crisis, the U.S. stock market was cointegrated

with the Hong Kong and other Asian stock markets (except Japan) while the Japanese stock

market was cointegrated with other Asian stock markets. These “slow-burn” spillover effects

are as expected. However, the U.S. stock market had no “fast and furious” contagion effect

on other Asian stock markets. This results partly from the capital controls in some Asian

markets (such as China, India, Indonesia, Malaysia, and Korea) and partly from favorable

net investment positions in some markets that were more open (such as Hong Kong). We

also show that there were significant “fast and furious” contagion effects from both the

Japanese and Hong Kong stock markets to other Asian stock markets. More specifically, we

find significant overreactions of other Asian stock markets to the instantaneous shocks from

the Japanese and Hong Kong stock markets but marked underreactions to the shock from

the U.S. stock market. Our international portfolio analysis for contagion also confirms this

conclusion. Perhaps from Asian market participants’ point of view, the markets located in

the same region and similar time zones do accommodate “fast and furious” shock waves, in

addition to “slow-burn” spillover effects across these markets, while other markets in other

regions and different time zones seem to generate more “slow-burn” spillover effects as the

world becomes a more integrated place.
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Figure 1: Eleven stock market trends in cointegration period 1
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Note: During cointegration period 1 (August 24,1998-August 10, 1999), the eleven stock
market indices demonstrate similar increasing trends while the market indices in Korea,
Indonesia, Malaysia and Singapore demonstrate more rapid increasing trends. The verti-
cal bar is used to highlight the huge market crash on August 31, 1998. All market indices
are normalized to 1 on July 3, 1997.
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Figure 2: Eleven stock market trends in cointegration period 2
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Note: During cointegration period 2 (September 6, 2001-August 26, 2002), the eleven
stock market indices demonstrate similar stable trends while the market indices in Korea,
the U.K. and the U.S. demonstrate more rapid decreasing trends at the end of the period.
The vertical bar is used to highlight September 17, 2001 after the 9-11 terrorist attack.
All market indices are normalized to 1 on July 3, 1997.
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Figure 3: Eleven stock market trends in cointegration period 3
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Note: During cointegration period 3 (December 21, 2006–May 9, 2008), the eleven stock
market indices demonstrate severe volatility and changing tides. In particular, the Asian
stock markets had a good run but became more integrated into the world stock markets
than ever before. The U.S. subprime crisis occurred during the period. This period
witnessed contagion from one market to another. Two vertical bars are used to highlight
the huge market crashes on August 16, 2007 and January 21, 2008, respectively. All
market indices are normalized to 1 on July 3, 1997.
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Figure 4: Eleven stock market trends in cointegration period 4
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Note: During cointegration period 4 (October 28, 2008–November 20, 2009), the eleven
stock market indices demonstrate similar bottoming and reversing comovements although
these upward moves after the bottom varied and were not smooth. The vertical bar is used
to highlight the bottom time around March 9, 2009. All market indices are normalized
to 1 on July 3, 1997.
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Figure 5: Net Equity Investments into Ten Countries: 1997-2009
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Note: The time series on International Investment Position Assets and Liabilities (Port-
folio Investment, Equity Securities) for the ten countries (except Taiwan) are retrieved
from International Monetary Fund eLibrary on March 12, 2012. During the period of
2006-2009, the net equity investments into Japan fell substantially. During the period of
2008-2009 the net equity investments into the U.S., U.K, and Korea also fell substantially.
But during the entire period of 1997-2010, the net equity investments into China, India,
Indonesia, Malaysia, and Singapore did not change much. Against this trend, the net
equity investment into Hong Kong increased during the period of 2008–2010.
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Table 2: Parameter estimate results from cointegration analysis

Period 1 Period 2 Period 3 Period 4
(Aug 24,1998-Aug 10,1999) (Sep 6,2001-Aug 26,2002) (Dec 21,2006-May 9,2008) (Oct 28,2008-Nov 20,2009)

Panel A: coefficients in the cointegrating vector
βUS 1 1 - 1 - 1
βUK -1.218 (0.191) -1.059 (0.060) -1.695 (0.600) -0.535 (0.055) 11.290 (1.958)
βJP - 1 - 1 0.348 (0.082)
βHK -0.685 (0.155) 0.200 (0.080) 1.087 (0.805) 0.413 (0.048) 6.993 (1.684)
βTW 0.481 (0.113) -0.456 (0.083) 4.295 (0.831) -0.195 (0.039) -5.401 (1.360) 0.269 (0.083)
βSG 0.389 (0.164) -0.453 (0.066) -13.109 (2.318) -0.618 (0.159)
βKR 0.265 (0.078) -1.834 (0.620) 0.089 (0.044) 5.384 (1.545) -0.950 (0.141)
βIN 0.173 (0.055) 2.983 (0.670) 1.000 (0.156)
βML -0.456 (0.086) 0.341 (0.174) -7.276 (1.746) 0.289 (0.049) -0.468 (0.201)
βCN -0.133 (0.065) -0.222 (0.057) 2.501 (0.571) -0.062 (0.012) 0.167 (0.062)
βID -0.144 (0.074) 0.242 (0.090) -3.485 (0.899) -0.352 (0.045) -9.212 (1.607) -0.374 (0.108)

Panel B: adjustment coefficients
αUS -0.284 (0.060) -0.022 (0.006) -0.256 (0.067) 0.009 (0.002) -0.101 (0.042)
αUK 0.062 (0.036) 0.204 (0.087)
αJP -0.136 (0.076) -0.024 (0.008)
αHK -0.276 (0.063) -0.012 (0.006)
αTW -0.170 (0.047) -0.166 (0.092) -0.039 (0.009) 0.014 (0.004)
αSG -0.103 (0.053) -0.251 (0.073) -0.016 (0.008) 0.009 (0.004) 0.086 (0.055)
αKR -0.245 (0.099) -0.029 (0.010) 0.188 (0.101) 0.168 (0.050)
αIN -0.141 (0.056) -0.030 (0.006) 0.314 (0.132) -0.087 (0.053)
αML 0.138 (0.068) -0.174 (0.046)
αCN -0.115 (0.044) 0.184 (0.078) 0.551 (0.181)
αID -0.174 (0.074) 0.284 (0.130) 0.014 (0.005)

Panel C: Johansen trace test
Trace statistic [Prob.]

r=0 265.990 [0.038] 274.088 [0.016] 296.799[0.001] 273.171 [0.018]
r=1 213.406 [0.092] 219.712 [0.048] 220.806[0.043] 194.767 [0.378]
r=2 163.838 [0.236] 169.888[0.139] 170.279[0.134] 151.750 [0.516]
LogL 5236.126 5855.103 8619.453 6573.383
AIC -54.647 -61.184 -65.285 -60.951

Panel D: tests for linear restrictions on β and residuals autocorrelation and ARCH tests

Linear restriction test χ2(1) : 0.232[0.630] χ2(4) : 0.558[0.968] χ2(4) : 3.708[0.447] χ2(2) : 2.143[0.343]
Autocorrelation test

LM test-VAR(1) 123.400 [0.422] 112.558 [0.696] 123.085[0.430] 141.201 [0.101]
LM test-AR(1) 0.318 [0.573] 0.041 [0.839] 0.009 [0.926] 0.231 [0.631] 0.055 [0.815] 0.482 [0.488]
LM test-AR(2) 0.419 [0.811] 1.813 [0.404] 2.597 [0.273] 0.609 [0.738] 1.871 [0.392] 1.623 [0.444]
LM test-AR(3) 0.782 [0.854] 2.057 [0.561] 3.384 [0.336] 1.115 [0.773] 2.170 [0.538] 1.166 [0.761]

ARCH effect test
LM test-ARCH(1) 0.362 [0.547] 2.524 [0.112] 0.578 [0.447] 3.790 [0.052] 0.192 [0.662] 0.561 [0.454]
LM test-ARCH(2) 0.438 [0.803] 3.072 [0.215] 1.273 [0.529] 7.671 [0.022] 6.597 [0.037] 1.195 [0.550]
LM test-ARCH(3) 0.517 [0.915] 12.027 [0.007] 1.275 [0.735] 11.104 [0.011] 7.471 [0.058] 1.179 [0.758]

Note: The table reports parameter estimates and related test statistics for the vector error correction models without any constant, trend, or lagged
dependent variables, which are chosen based on the Akaike information criterion. Panel A reports the parameter estimates in the cointegrating vectors
(given by βi). In Panel A, if there is one cointegration vector, it is normalized for the U.S. stock market. If there are two cointegration vectors, they
are normalized for the U.S. and Japan stock markets, respectively. Panel B reports the adjustment coefficients (given by αi) of cointegration. In Panel
C, the Johansen trace test statistics are presented. The test statistics in bold font correspond to the chosen numbers of cointegrating vectors at the 5%
significance level. Standard errors are given in parentheses, while p-values are reported in brackets. In Panel D, the linear restriction tests indicate that
the identified cointegrating vectors are supported by the data. In panel D, the multivariate LM test statistics for residual autocorrelation up to order
one, the univariate LM test statistics for residual autocorrelation up to order three, and the ARCH test statistics for residual conditional variance up
to order three are reported. The test statistics in bond font indicate that the null hypothesis of no ARCH effect can be rejected at the 5% significant
level.
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Table 3: Results from SVAR analysis

Period 1 Period 2 Period 3 Period 4
(Aug 24,1998-Aug 10,1999) (Sep 6, 2001-Aug 26, 2002) (Dec 21, 2006-May 9, 2008) (Oct 28, 2008-Nov 20, 2009) Mean

Panel A: shocks from the US market

A−1BUK,US 0.0070 (0.0010) 0.0095 (0.0013) 0.0064 (0.0008) 0.0109 (0.0013) 0.0085

A−1BJP,US 0.0066 (0.0013) 0.0091 (0.0009) 0.0147 (0.0014) 0.0076

A−1BHK,US 0.0095 (0.0016) 0.0062 (0.0011) 0.0090 (0.0011) 0.0127 (0.0016) 0.0093

A−1BTW,US 0.0027 (0.0007) 0.0019 (0.0005) 0.0039 (0.0006) 0.0081 (0.0012) 0.0042

A−1BSG,US 0.0089 (0.0016) 0.0046 (0.0008) 0.0071 (0.0008) 0.0099 (0.0014) 0.0076

A−1BKR,US 0.0055 (0.0012) 0.0055 (0.0010) 0.0061 (0.0007) 0.0098 (0.0013) 0.0067

A−1BIN,US 0.0054 (0.0013) 0.0003 (0.0001) 0.0067 (0.0009) 0.0087 (0.0012) 0.0053

A−1BML,US 0.0116 (0.0020) 0.0020 (0.0004) 0.0036 (0.0005) 0.0040 (0.0006) 0.0053

A−1BCN,US -0.0023(0.0013) 0.0015 (0.0006) 0.0021 (0.0005) 0.0049 (0.0009) 0.0015

A−1BID,US 0.0009 (0.0003) 0.0039 (0.0008) 0.0073 (0.0009) 0.0083 (0.0013) 0.0051
Mean 0.0049 0.0042 0.0061 0.0092

LR test for binding restrictions:

χ2(1) 0.0973[0.7551] 19.3183[0.0000]

χ2(2) 4.0978[0.1289] 32.7557[0.0000]
Panel B: shocks from the Japan market

A−1BUK,JP 0.0041 (0.0010) 0.0025 (0.0006) 0.0027 (0.0005) 0.0031 (0.0006) 0.0031

A−1BHK,JP 0.0066 (0.0015) 0.0063 (0.0010) 0.0135 (0.0010) 0.0145 (0.0014) 0.0102

A−1BTW,JP 0.0019 (0.0006) 0.0020 (0.0005) 0.0059 (0.0007) 0.0094 (0.0011) 0.0048

A−1BSG,JP 0.0041 (0.0010) 0.0063 (0.0010) 0.0107 (0.0008) 0.0113 (0.0013) 0.0081

A−1BKR,JP 0.0033 (0.0010) 0.0088 (0.0014) 0.0092 (0.0007) 0.0112 (0.0011) 0.0081

A−1BIN,JP 0.0025 (0.0007) 0.0004 (0.0001) 0.0100 (0.0010) 0.0100 (0.0012) 0.0057

A−1BML,JP 0.0009 (0.0004) 0.0027 (0.0005) 0.0054 (0.0006) 0.0046 (0.0005) 0.0034

A−1BCN,JP 0.0003 (0.0002) 0.0015 (0.0006) 0.0032 (0.0008) 0.0056 (0.0010) 0.0026

A−1BID,JP 0.0004 (0.0002) 0.0042 (0.0008) 0.0109 (0.0010) 0.0096 (0.0013) 0.0063
Mean 0.0041 0.0051 0.0085 0.0096

LR test for binding restrictions:

χ2(1) 1.6989[0.1924] 8.7610[0.0031]

χ2(2) 0.3334[0.8464] 11.5941[0.0030]
Panel C: shocks from the Hong Kong market

A−1BUK,HK 0.0042 (0.0009) 0.0048 (0.0010) 0.0022 (0.0004) 0.0040 (0.0007) 0.0038

A−1BJP,HK

A−1BTW,HK 0.0057 (0.0013) 0.0036 (0.0009) 0.0064 (0.0006) 0.0120 (0.0011) 0.0069

A−1BSG,HK 0.0124 (0.0013) 0.0071 (0.0010) 0.0065 (0.0006) 0.0145 (0.0011) 0.0101

A−1BKR,HK 0.0100 (0.0019) 0.0069 (0.0013) 0.0039 (0.0005) 0.0088 (0.0014) 0.0074

A−1BIN,HK 0.0075 (0.0014) 0.0006 (0.0002) 0.0096 (0.0010) 0.0121 (0.0012) 0.0075

A−1BML,HK 0.0026 (0.0011) 0.0032 (0.0005) 0.0041 (0.0006) 0.0036 (0.0005) 0.0034

A−1BCN,HK 0.0009 (0.0004) 0.0031 (0.0011) 0.0024 (0.0006) 0.0065 (0.0012) 0.0032

A−1BID,HK 0.0013 (0.0004) 0.0075 (0.0010) 0.0090 (0.0009) 0.0123 (0.0013) 0.0075
Mean 0.0065 0.0055 0.0065 0.0092

LR test for binding restrictions:

χ2(1) 2.1770[0.1401] 5.0761[0.0790]

χ2(2) 0.3996[0.8189] 14.7719[0.0001]

Note: The table reports parameter estimates for the model et = A−1Btvt, where et is a vector of the observed residuals of VECM and vt is a vector

of the unobserved structural innovations. The element (i, j) of matrix A−1B, (A−1B)ij , gives how market i instantaneously responds to one unit
structural innovation from market j. Estimation is by SVAR analysis over daily index prices of eleven stock markets for four partitioned periods of

cointegration. The LR test for binding restriction β′A−1B = 0 is conducted for each shock source and each period to test for the deviation of initial
impacts from long-run impacts. The values in bold font denote that the binding restriction can be rejected at the 5% significance level. Standard errors
are given in parentheses, while p-values are reported in brackets. The means are also reported for all markets and periods. Some cells do not have any
value because they correspond to zero restrictions identified by the analysis using the directed acyclic graph.
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Table 4: Results of contagion tests

Period 1 Period 2 Period 3 Period 4
(Aug 24,1998-Aug 10,1999) (Sep 6, 2001-Aug 26, 2002) (Dec 21, 2006-May 9, 2008) (Oct 28, 2008-Nov 20, 2009)

Panel A: shocks from the US market
CJP,US -0.0029 0.0654 -1.4624 -0.2843

(-0.0102, 0.0000) (-0.1064, 0.0950) (-1.4689, -0.6628) (-0.4005, -0.1679)
CHK,US 0.0380 0.1717 -1.0913 -0.1981

(-0.0247, 0.2080) (0.1346, 0.5995) (-1.2733, -0.2827) (-0.3184, -0.0446)
CTW,US 0.0324 0.0111 -0.2348 0.0886

(0.0022, 0.0361) (-0.2722, 0.0312) (-0.2594, 0.0134) (0.0447, 0.1231)
CSG,US 0.1080 0.0958 -0.9672 -0.2200

(-0.0719, 0.2199) (-0.0329, 0.3399) (-1.1618, -0.5317) (-0.3140, -0.1025)
CKR,US -0.1151 0.1335 -1.4103 -0.4203

(-0.2880, 0.0542) (-0.0024, 0.2960) (-2.6222, -1.4075) (-0.5398, -0.2997)
CIN,US 0.0939 -0.0967 -2.3230 0.0451

(-0.0965, 0.2081) (-0.8860, -0.0166) (-5.5051, -2.0090) (-0.0238, 0.1030)
CML,US -0.0813 -0.0033 -0.6915 -0.0223

(-0.1212, 0.1965) (-0.1618, 0.1122) (-1.1361, -0.4363) (-0.0460, 0.0012)
CCN,US -0.0811 -0.2650 -1.8602 0.0371

(-0.1061, -0.0003) (-0.6893, -0.0759) (-6.8849, -0.9916) (-0.0072, 0.0543)
CID,US -0.0209 0.0688 -2.3949 -0.2630

(-0.0678, 0.0005) (-0.0264, 0.2354) (-3.9775, -2.3342) (-0.3600, -0.1297)
Mean -0.0092 -0.0080 -1.4117 -0.1078

Panel B: shocks from the Japan market
CHK,JP -0.0068 0.0186 0.1773 0.0111

(-0.0694, 0.1074) (-0.0110, 0.0214) (-0.0281, 0.3590) (-0.0894, 0.1506)
CTW,JP -0.0871 -0.0948 0.1461 -0.0127

(-0.1000, -0.0059) (-0.1999, -0.0146) (0.0272, 0.1719) (-0.1002, 0.1020)
CSG,JP -0.1074 -0.0942 0.3093 0.1475

(-0.4962, -0.0374) (-0.1090, 0.0289) (0.2290, 0.4280) (0.0558, 0.2026)
CKR,JP 0.0281 -0.1787 0.2240 0.1489

(-0.0105, 0.0723) (-0.3044, -0.0277) (0.1522, 0.3762) (0.0676, 0.2354)
CIN,JP -0.0223 0.0003 0.3475 -0.1105

(-0.7643, -0.0196) (-0.0182, 0.0006) (0.2981, 0.6593) (-0.1988, 0.0534)
CML,JP -0.0014 -0.0099 0.0252 -0.0603

(-0.2589, -0.0009) (-0.0247, 0.0224) (-0.0901, 0.0915) (-0.0777, -0.0187)
CCN,JP -0.0148 -0.0388 0.0137 0.0410

(-0.0843, -0.0014) (-0.0550, 0.0214) (0.0053, 0.4318) (-0.0095, 0.0822)
CID,JP 0.0002 -0.0353 0.4112 0.1458

(-0.0684, 0.0003) (-0.0532, 0.0304) (0.3156, 0.6788) (0.0527, 0.1823)
Mean -0.0293 -0.0645 0.2110 0.0428

Panel C: shocks from the Hong Kong market
CJP,HK -0.0002 -0.0610 -0.0659 0.0000

(-0.0060, 0.0000) (-0.1816, -0.0569) (-0.1231, -0.0082) (-0.0227, 0.0071)
CTW,HK -0.1415 -0.2107 0.0081 -0.2993

(-0.1949, 0.0081) (-0.7484, -0.1558) (-0.1447, 0.0463) (-0.4769, -0.1663)
CSG,HK -0.3160 -0.1219 0.1693 0.2276

(-0.4281, -0.1121) (-0.2618, -0.0347) (0.1158, 0.2080) (0.1587, 0.2993)
CKR,HK -0.3673 -0.1025 0.0668 0.1068

(-0.5240, -0.1584) (-0.5124, -0.0588) (0.0494, 0.1080) (0.0716, 0.2324)
CIN,HK -0.1103 -0.0071 0.2140 -0.3209

(-0.3758, 0.0043) (-0.1428, 0.0026) (0.0978, 0.3587) (-0.5039, -0.1999)
CML,HK 0.0117 0.0290 0.0155 -0.0480

(-0.0323, 0.0134) (-0.0677, 0.1383) (-0.0732, 0.0391) (-0.0806, -0.0258)
CCN,HK -0.0508 -0.0306 -0.0325 -0.1421

(-0.0669, 0.0018) (-0.1395, 0.2331) (-0.3075, 0.0865) (-0.3020, -0.0292)
CID,HK -0.0017 -0.0571 0.2315 0.0562

(-0.0350, 0.0040) (-0.1995, -0.0108) (0.1073, 0.3513) (-0.0475, 0.1513)
Mean -0.1394 -0.0715 0.0961 -0.0599

Note: The contagion measure Ci,j from market j to market i

(
Ci,j =

(
Φi,j+Φ∗(0)i,j
Φj,j+Φ∗(0)j,j

)2

−
(

Φi,j
Φj,j

)2
)

is reported for different

cointegration periods. A Ci,j value that is significantly greater than 0 suggests the contagion effect from market j to market i.
In every case, the Monte Carlo simulation method with 1000 replications is used to evaluate statistical significance. The values in
parentheses are the 5th and 95th quantiles of the simulated distribution. The 5% quantile of Ci,j that is greater than 0 (in bold
font) indicates a significant contagion effect. The means for seven Asian emerging stock markets are also reported for all shock
sources and periods.
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Table 6: Results of variance decomposition

Period 1 Period 2 Period 3 Period 4
(Aug 24,1998-Aug 10,1999) (Sep 6,2001-Aug 26,2002) (Dec 21,2006-May 9,2008) (Oct 28,2008-Nov 20,2009)

Panel A: portfolio variance

Ve
p

0.000272 0.000324 0.000181 0.000368
(0.000270, 0.000413) (0.000235, 0.000533) (0.000151, 0.000354) (0.000349, 0.000521)

εp
-0.000103 -0.000211 -0.000003 -0.000066

(-0.000206, -0.000075) (-0.000387, -0.000186) (-0.000006, 0.000109) (-0.000148, -0.000005)

Vp
0.000169 0.000113 0.000178 0.000303

(0.000152, 0.000222) (0.000105, 0.000159) (0.000128, 0.000390) (0.000220, 0.000396)
Panel B: shocks from the US market

Ve
p,US

0.000015 0.000000 0.000096 .000094
(0.000013, 0.000051) (0.000000, 0.000004) (0.000095, 0.000171) (0.000063, 0.000190)

εp,US
0.000007 0.000008 -0.000069 -0.000035

(-0.000010, 0.000022) (-0.000006, 0.000030) (-0.000157, -0.000055) (-0.000102, 0.000012)

Vp,US
0.000022 0.000008 0.000028 0.000059

(0.000018, 0.000048) (0.000001, 0.000031) (0.000007, 0.000039) (0.000053, 0.000105)
Vp,US/Vp 12.88% 7.04% 15.51% 19.43%

Panel C: shocks from the Japan market

Ve
p,JP

0.000007 0.000029 0.000012 0.000051
(0.000006, 0.000030) (0.000007, 0.000039) (0.000006, 0.000068) (0.000025, 0.000062)

εp,JP
-0.000003 -0.000015 0.000050 0.000026

(-0.000024, -0.000001) (-0.000030, -0.000001) (0.000034, 0.000140) (0.000012, 0.000046)

Vp,JP
0.000004 0.000014 0.000062 0.000077

(0.000003, 0.000008) (0.000005, 0.000018) (0.000032, 0.000181) (0.000057, 0.000088)
Vp,JP /Vp 2.12% 12.14% 34.83% 25.59%

Panel D: shocks from the Hong Kong market

Ve
p,HK

0.000060 0.000047 0.000008 0.000116
(0.000044, 0.000100) (0.000039, 0.000126) (0.000001, 0.000030) (0.000093, 0.000188)

εp,HK
-0.000027 -0.000026 0.000027 -0.000016

(-0.000059, -0.000009) (-0.000095,-0.000020) (0.000022, 0.000047) (-0.000050, 0.000033)

Vp,HK
0.000033 0.000021 0.000036 0.000099

(0.000029, 0.000043) (0.000020, 0.000036) (0.000023, 0.000064) (0.00088, 0.000152)
Vp,HK/Vp 19.80% 18.63% 20.00% 32.85%

Note: The table reports the results of 1-step ahead conditional forecast error variance decomposition for the market portfolio returns.
Ve

p represents the variance driven by the efficient contemporaneous information transmission, and Vp represents the empirical variance.

εp indicates a departure from the efficient contemporaneous information transmission and is calculated as εp = Vp −Ve
p. For a specific

shock from market j, the measures are indicated by the second subscript j. In every case, the Monte Carlo simulation method with
1000 replications is used to evaluate statistical significance. The values in parentheses are the 5th and 95th quantiles of the simulated
distribution. The εp,j value with 5% quantile larger than 0 (in bold font) indicates the significant contagion effect. The table also reports
the percentage of the variance of the market portfolio returns that is due to a specific shock source.
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Appendix A

In order to establish the theoretical basis for our analysis, we attempt to propose a theoretical

setup for two stock markets. This setup gives us some insight as to how we can study

contagion when two market portfolio indices are cointegrated. Then we implement a simple

simulation to reinforce this insight.

In our theoretical setup, we attempt to characterize the cointegration relation between

two stock markets 1 and 2, whose prices at time t, p1t and p2t, can be modelled, respectively,

as:

d ln p1t = α1d ln p2t + β1 (a+ ln p1t − b ln p2t) dt+ dB1t (A-1)

and

d ln p2t = α2d ln p1t + β2 (c+ ln p2t − d ln p1t) dt+ dB2t, (A-2)

where α1, α2, β1, β2, a, b, c, and d are constant parameters and B1t and B2t are composite

Wiener processes given by

B1t = σ11W1t + σ12W2t (A-3)

and

B2t = σ21W1t + σ22W2t. (A-4)

Let ln pt = [ln p1t, ln p2t]
T . Equations (A-1) and (A-2) can be presented in the matrix form

as the multivariate:

Ad ln pt = µdt+ C ln ptdt+ ΣdWt, (A-5)

where A =

[
1 −α1

−α2 1

]
, dWt = [dW1t, dW2t]

T , µ = [β1a, β2c]
T , C =

[
β1 −β1b
−β2d β2

]
,

and Σ =

[
σ11 σ12

σ21 σ22

]
. From equation (A-5), we have

d ln pt = A−1µdt+ A−1C ln ptdt+ A−1ΣdWt, (A-6)

which can be further simplified into

d ln pt = (µ̃− C̃ ln pt)dt+ Σ̃dWt. (A-7)

This expression implies that for the two stock market prices to be cointegrated their prices

must be governed by the same stochastic trend (e.g., the growth of the global capital markets)
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and be perturbed by shocks from same sources (e.g., common/correlated shocks to the global

capital markets). This is the basis for us to study contagion.

To see the above point clearer, we derive ln pt. Given that the matrix exponential, e−C̃t,

exists, from equation (A-7) we obtain the following expression:

e−C̃td ln pt + e−C̃tC̃ ln ptdt = e−C̃tµ̃dt+ e−C̃tΣ̃dWt. (A-8)

Rewriting the left-hand side of equation (A-8), we have

de−C̃t ln pt = e−C̃tµ̃dt+ e−C̃tΣ̃dWt. (A-9)

Now we integrate equation (A-9) from 0 to t resulting:

e−C̃t ln pt − ln p0 =

∫ t

0

e−C̃sµ̃ds+

∫ t

0

e−C̃sΣ̃dWs, (A-10)

where x0 is the initial value of {xt, t ≥ 0}. We simplify the first term on the right-hand side

of equation (A-10) to get

e−C̃t ln pt − ln p0 = − µ̃
C̃

(e−C̃t − 1) +

∫ t

0

e−C̃sΣ̃dWs, (A-11)

where 1 is a square matrix with elements being unity. Further simplifying equation (A-11)

yields

ln pt = eC̃t ln p0 −
µ̃

C̃
(1− eC̃t) +

∫ t

0

e−C̃(s−t)Σ̃dWs. (A-12)

This expression further implies that for the two stock market prices to be cointegrated

their prices must be governed by the same stochastic trend and be perturbed by the com-

mon/correlated shocks. As we note, the two market prices are not cointegrated either be-

cause they are not governed by the same stochastic trend, or are perturbed by uncom-

mon/uncorrelated shocks, or both. In this case, we could not study contagion which is

defined as the transmission of some shocks beyond their long-term interdependence.

In the following simulation, we propose a simple framework in which two stock markets,

market 1 and 2, are affected by common factors (without the deterministic trend) but,

sometimes, are affected by market-specific factors of their own. pit is the market portfolio

index (in log) for market i in period t. As can be seen later, this discussion can be easily

extended to the case of n markets.
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We assume that the market portfolio prices for these two markets are determined by two

k-factor models.1 That is, the market portfolio price for market i (i = 1, 2) has the following

data generate process: for t = 1, 2, . . . , T ,

pit =
k∑

j=1

bijfjt + vit, (A-13)

where fjt, j = 1, 2, . . . , k, are the k common factors and vit is the innovation unique to

market i (i = 1, 2). Here, pit ∼ I(1), fjt ∼ I(1), and vit ∼ I(0). The first difference of the

k-factor model for the stock market portfolio price leads to the k-factor model of the stock

market portfolio return. That is, let rit = ∆pit = pi,t − pi,t−1 is the market portfolio return

for stock market i in period t. Then the k-factor model of the stock market portfolio price

is rit =
∑k

j=1 bij∆fjt + ∆vit.

The k-factor model in equation (A-13) assumes that, other than market specific risk

factor vit, there is no factor that is unique to a specific market and that the common factors

jointly affect the two stock markets. If there exists such a market specific factor x1t that

systematically influences market 1 but not market 2,2 the price equation for market 1 must

be changed to

p1t =
k∑

j=1

b1jfjt + b1,k+1x1t + v1t. (A-14)

The price equation for market 2 remains to be

p2t =
k∑

j=1

b2jfjt + v2t. (A-15)

The data generating processes for p1t and p2t are quite different when x1t is I(1) but is also

a near I(2). This reflects that stock market 1 experiences a growth pattern that differs from

that of stock market 2.3

If b1,k+1 = 0 in equation (A-14), the two market portfolio prices (p1t and p2t) share the

1In our simulation exercise, for simplicity, we assume that two market portfolio prices are regulated by
their k-factor models.

2For easy of communication, we let market 1 to be exposed to x1t in addition to the common factors fjt,
where j = 1, 2, . . . , k and t = 1, 2, . . . , T . Please note that this is a simplification. Logically, this is equivalent
to let market i to be exposed to xit but market 1 is exposed to x′1t = x1t − x2t.

3Here, a I(1) but near I(2) process x1t can be used to describe this growth pattern. Such a process can
be generated from zt ∼ I(0) using (1− L)(1− ρL)x1t = zt, where |ρ|+ ε = 1 and ε is a very small number.
This implies x1t = (1 + ρ)x1,t−1 − ρx1,t−2 + zt.
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common factors and are cointegrated. If b1,k+1 6= 0, although these prices share the common

factors, they may not be cointegrated because of the presence of the factor that is unique

to market 1, x1t. Our simulation results show that when x1t has more influence on p1t than

f1t and f2t do, the cointegration between p1t and p2t may be weakened substantially. In this

case, we cannot establish the long-run equilibrium between the two stock markets and hence

we cannot evaluate contagion which is viewed as a departure from this long-run equilibrium.

We will report our simulation exercise and results at the latter part of the appendix.

In practice, because we cannot observe the common and market specific factors, we can

only rely on the identification of a cointegration relation between the two market portfolio

prices to establish the long-run equilibrium. The cointegration relation can take one of the

following forms:

p1t = α1 + β1p2t + e1t (A-16)

and

p2t = α2 + β2p1t + e2t, (A-17)

where αk and βk are cointegrating parameters and ekt is the error term in period t in cointe-

gration relation k for k = 1, 2. These error terms reflect deviations from these cointegration

relations.4

Now we study ekt for k = 1, 2 in period t. Substituting equation (A-13) into equations

(A-16) and (A-17), we obtain

k∑
j=1

b1jfjt + v1t = α1 + β1

(
k∑

j=1

b2jfjt + v2t

)
+ e1t, (A-18)

and
k∑

j=1

b2jfjt + v2t = α2 + β2

(
k∑

j=1

b1jfjt + v1t

)
+ e2t. (A-19)

Now we express ekt, k = 1, 2, as functions of v1t and v2t:

e1t = δ1t + (v1t − β1v2t) (A-20)

and

e2t = δ2t + (v2t − β2v1t), (A-21)

4One may note that α2 = −α1

β1
, β2 = 1

β1
, and e2t = − e1tβ1

.
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where

δ1t = −α1 +
k∑

j=1

(b1j − β1b2j)fjt (A-22)

and

δ2t = −α2 +
k∑

j=1

(b2j − β2b1j)fjt. (A-23)

Equations (A-20) and (A-21) represent the deviations from the cointegration relations given

in equations (A-16) and (A-17). In addition, the error terms of cointegration regressions, e1t

and e2t, are I(0). Because, for i = 1, 2, E(vit) = 0 and E(eit) = 0, then E(δit) = 0. That

is, the error terms of the k-factor models are expected to be zero and the residuals of the

cointegration regressions are expected to be zero. These facts also imply that the two stock

market portfolio prices are cointegrated if no other market specific factors to disturb specific

markets.

Although the k-factor models give us some traction on the underlying data generating

processes for the market portfolio prices, we cannot observe the common and market specific

factors. However, we can use the factor models to make sense the cointegration relations

shown by equations (A-16) and (A-17) and identify αk, βk, and ekt, k = 1, 2. In addition, we

also want to make sense of how the residuals from the cointegration relations, e1t and e2t,

are related to the unobservable market specific factors embedded in the underlying factor

models, v1t and v2t.

Please note that the general setup for n stock markets can be explained by the case of two

stock markets which are affected by a set of common and market specific factors. Following

our theoretical discussion, we can stack the error terms of cointegration regressions for two

stock markets, e1t and e2t, into

et =

[
e1t

e2t

]
. (A-24)

Now we can identify how et is related to vit (i = 1, 2), the orthogonal structural innovations

to markets 1 and 2, v1t and v2t, respectively. Now we stack them into

vt =

[
v1t

v2t

]
. (A-25)
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We can relate vt to et using the following structure:

et = A−1Bvt. (A-26)

where

A =

[
a11 a12

a21 a22

]
(A-27)

and

B =

[
b11 0

0 b22

]
. (A-28)

Let γ = 1
|A| . Because

A−1 =

[
γa22 −γa12
−γa21 γa11

]
, (A-29)

[
e1t

e2t

]
=

[
γa22 −γa12
−γa21 γa11

][
b11 0

0 b22

][
v1t

v2t

]
(A-30)

=

[
γa22b11v1t − γa12b22v2t
−γa21b11v1t + γa11b22v2t

]
.

Expanding the above expression as two separate equations, we obtain

e1t = γa22b11v1t − γa12b22v2t (A-31)

and

e2t = γa11b22v2t − γa21b11v1t (A-32)

We see that equations (A-31) and (A-32) share the similar structures of equations (A-20)

and (A-21) if δi = 0, i = 1, 2. In addition to δi = 0, i = 1, 2, if we further impose the

restrictions γa22b11 = γa11b22 = 1, γa12b22 = β1, and γa21b11 = β2, then equations (A-31)

and (A-32) share the identical structures of equations (A-20) and (A-21).

A simulation exercise can be used to illustrate the validity of using the cointegration

analysis to identify equilibrium relations among stock market prices when they are influenced

by a set of common factors. When some stock market prices are driven more by their market

specific factors, the identification of such equilibrium relations could be difficult.

To specify the parameters in the simulation exercise for the data generating processes
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given in equations (A-14) and (A-15), we assume that the number of the factors is k = 2.

The sample size is T = 1000. The bi-factor models have the following parameters: b11 = 0.2,

b12 = 0.2, b13 = 0.4, b21 = 0.1, and b22 = 0.3. The factor 1, f1t, is generated by (1−L)f1t =

w1t ∼ N(2, 4). The factor 2, f2t, is generated by (1 − L)f2t = w2t ∼ N(1, 1). The error

terms of the bi-factor models are u1t ∼ N(0, 1) and u2t ∼ N(0, 1), respectively, and they are

statistically independent. In addition, we let x1t be a I(1) but near I(2) process. Such a

process can be generated from zt ∼ I(0) using (1−L)(1− ρL)x1t = zt, where |ρ|+ ε = 1 and

ε is a very small number. This implies x1t = (1 + ρ)x1,t−1 − ρx1,t−2 + zt. In our simulation

exercise, we let ρ = 0.97.

Figures A1 and A2 show the changes in two common factors, f1t and f2t. These two

factors jointly influence two stock market portfolio returns and, therefore, their prices p1t

and p2t. Figure A3 shows x1t, which is I(1) but near I(2) with ρ = 0.97. This factor enters

the data generating process of p1t when b13 = 0.4 (see Figure A4). When b13 = 0, this factor

does not enter the data generating process of p1t (see Figure A5). In this simulation exercise,

we do not allow p2t to be affected by another market specific factor beyond the two common

factors f1t and f2t. As can be seen in Figures A4 and A5, the return for stock market 1

portfolio can be affected by the factor that is specific to market 1.

Now we examine the plausible cointegration relation between the two stock market port-

folio prices. As shown in Figure A7, the two prices appear to be not cointegrated when the

stock market 1 portfolio price is influenced by x1t. As shown in Figure A8, the two prices

appear to be cointegrated when the stock market 1 portfolio price is not influenced by x1t.

The examination of the residuals of this cointegration regression based on the graphical

analysis (see Figure A9) and the cointegration test further confirms that the two prices

under this condition are not cointegrated. If we eliminate the impact of x1t on the stock

market 1 portfolio price, we can find a cointegration relation between the two prices based

on the graphical analysis (see Figure A10) and the cointegration test. Of course, the latter

is completely expected as the two prices are influenced jointly by the two common factors.
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The changes of common factor 1 (f1) time series
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Figure A1: Changes of common factor f1
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The changes of common factor 2 (f2) time series
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Figure A2: Changes of common factor f2
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The factor specific for stock market 1 (x1) time series
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Figure A3: Factor specific for market 1, x1
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The return for stock market 1 (r1) time series with b13 = 0.4
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Figure A4: Market 1 portfolio return influenced by x1
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The return for stock market 1 (r1) time series with b13 = 0
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Figure A5: Market 1 portfolio return not influenced by x1
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The return for stock market 2 (r2) time series
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Figure A6: Market 2 portfolio return
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Figure A7: The link between two market portfolio prices with market 1 influenced by x1
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Figure A8: The link between two market portfolio prices with market 1 not influenced by x1

16



Cointegration residuals with x1
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Figure A9: Non-stationary residuals in the cointegration regression with market 1 influenced
by x1
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Cointegration residuals without x1
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Figure A10: Stationary residuals in the cointegration regression with market 1 not influenced
by x1
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Appendix B

Without loss of generality, we assume that stock market portfolio returns follow the data

generating process of ∆pt = Πpt−1 + Γ∆pt−1 + et. This data generating process permits

dynamics and comovements within and across stock markets. The VECM has a VAR rep-

resentation

A(L)pt = et (B-1)

where A(L) = In−A1L−A2L
2 with A1 = Π + In + Γ = αβ′ + In + Γ and A2 = −Γ. Here

α is an n× r matrix and β an n× r matrix capturing the r cointegration relations among n

elements in pt.

Gonzalo and Granger (1995) define ∆Pt and ∆Tt as the innovations associated with the

permanent (P) and transitory (T) components of ∆pt, respectively. Their P-T decomposition

is as follows:

∆pt = ∆Pt + ∆Tt = θ1∆ft + θ2∆zt, (B-2)

where θ1 = β⊥(α′⊥β⊥)−1 and θ2 = α(β′α)−1 so that θ1 is an n× (n− r) matrix and θ2 is an

n× r matrix. ft = α′⊥pt and zt = β′pt.

Let G =

[
α′⊥

β′

]
, then Gpt =

[
ft

zt

]
. Thus, we have

GA(L)G−1

[
(1− L)In−r 0

0 Ir

]−1 [
∆ft

zt

]
= GA(L)G−1

[
ft

zt

]
= GA(L)pt = Get.

(B-3)

Equation (B-3) is the AR representation of

[
∆ft

zt

]
. To write it in an extensive form, define

the first n−r columns of G−1 as G−1n−r and the last r columns of G−1 as G−1r . Then we have[
In−r − (α′⊥ΓG−1n−r)L (−α′⊥ΓG−1r )L(1− L)

(−β′ΓG−1n−r)L Ir − (β′α + Ir + β′ΓG−1r )L+ (β′ΓG−1r )L2

][
∆ft

zt

]
= Get.

(B-4)

We can write equation (B-4) compactly as[
F11(L) F12(L)

F21(L) F22(L)

][
∆ft

zt

]
= Get (B-5)

Fij(L) can be derived according to equation (B-3). For example, F11(L) is an (n−r)×(n−r)
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matrix which is from “(the first n − r rows of G) ×A(L)× (the first n − r columns of

G−1)/(1− L)”. We can obtain F12(L), F21(L) and F22(L) similarly. Let L = 0, 1, we have

F11(0) = In−r, F11(1) = In−r − α′⊥ΓG−1n−r.

F12(0) = 0, F12(1) = 0,

F21(0) = 0, F21(1) = −β′ΓG−1n−r,

F22(0) = Ir, F22(1) = −β′α. (B-6)

Let uP
t = α′⊥et and uT

t = β′et. We can write equation (B-5) as[
F11(L) F12(L)

F21(L) F22(L)

][
∆ft

zt

]
=

[
uP
t

uT
t

]
. (B-7)

Inverting equation (B-7) we obtain[
∆ft

zt

]
=

[
F11(L) F12(L)

F21(L) F22(L)

][
uP
t

uT
t

]
, (B-8)

where

[
F11(L) F12(L)

F21(L) F22(L)

]
=

[
F11(L) F12(L)

F21(L) F22(L)

]−1
. We assume that Fij(L)’s exist and can

be determined by inverting the partitioned matrix. Therefore, we have

F11(L) = (F11(L)− F12(L)F22(L)−1F21(L))−1, (B-9)

F12(L) = −(F11(L)− F12(L)F22(L)−1F21(L))−1F12(L)F22(L)−1,

F21(L) = −F22(L)−1F21(L)(F11(L)− F12(L)F22(L)−1F21(L))−1,

F22(L) = F22(L)−1 + F22(L)−1F21(L)(F11(L)− F12(L)F22(L)−1F21(L))−1F12(L)F22(L)−1.

Let L = 0, 1, we have

F11(0) = In−k, F11(1) = F11(1)−1, (B-10)

F12(0) = 0, F12(1) = 0,

F21(0) = 0, F21(1) = −F22(1)−1F21(1)F11(1)−1

F22(0) = Ir, F22(1) = F22(1)−1.
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Furthermore, we can express ∆Pt and ∆Tt equation by equation compactly as[
∆Pt

∆Tt

]
=

[
θ1 0

0 θ2

][
∆ft

∆zt

]
(B-11)

=

[
θ1 0

0 θ2

][
In−r 0

0 (1− L)Ir

][
F11(L) F12(L)

F21(L) F22(L)

][
uP
t

uT
t

]

=

[
θ1F

11(L) θ1F
12(L)

θ2(1− L)F21(L) θ2(1− L)F22(L)

][
uP
t

uT
t

]
.

Therefore,

∆Pt = θ1F
11(L)uP

t + θ1F
12(L)uT

t , (B-12)

∆Tt = θ2(1− L)F21(L)uP
t + θ2(1− L)F22(L)uT

t .

It is worth noting that F12(1) = 0 in equation (B-10), which implies that the permanent

shock ∆Pt still has the transitory component θ1F
12(L)uT

t .

Substituting equations (B-12) into equation (B-2), we have

∆pt = ∆Pt + ∆Tt (B-13)

=
[
θ1F

11(L) + θ2(1− L)F21(L) θ1F
12(L) + θ2(1− L)F22(L)

] [ uP
t

uT
t

]

=
[

D1(L) D2(L)
] [ uP

t

uT
t

]
.

Here we define

D1(L) = θ1F
11(L) + θ2(1− L)F21(L). (B-14)

D2(L) = θ1F
12(L) + θ2(1− L)F22(L).

Because F12(1) = 0, D2(1) = 0, which means that uT
t only has transitory effect on the

level of pt. Hence, uP
t and uT

t are named the permanent and transitory shocks, respectively,

by Gonzalo and Ng (2001). This P-T decomposition differs from that of Gonzalo and Granger

(1995).
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However, if we focus on the components of D1(L), we find that the permanent shock still

has transitory component. Let L = 0, 1. We have

D1(0) = θ1F
11(0) + θ2F

21(0) = θ1In−r, (B-15)

D2(0) = θ1F
12(0) + θ2F

22(0) = θ2Ir,

D1(1) = θ1F
11(1) = θ1F11(1)−1,

D2(1) = θ1F
12(1) = 0.

Here, D1(0) = θ1In−r is the initial impact of a permanent shock, uP
t . D1(1) = θ1F11(1)−1

is the long-run pricing impact. Only when F11(1)−1 = In−r, i.e., Γ = 0, the initial impact of

uP
t is equal to its long-run pricing impact.

As we can see, different P-T decomposition methods always provide different identifica-

tions for permanent and transitory shocks. In fact, all the information can be fully reflected

in the level of pt if given long-enough period. What we focus on, especially in contagion

analysis, should be the deviation of the initial impact of innovations on stock markets from

the long-run pricing impact and why this deviation exists. Therefore, we only consider the

deviation of the initial impact from the long-run pricing impact and avoid using the terms

“permanent shocks” and “transitory shocks,” which could be ambiguous in our context.

The n × 1 vector of error terms, et, can be expressed in a structural relation with the

n × 1 vector of unobservable structural innovations vt: Aet = Bvt, where vt ∼ (0, In) and

A and B are n × n matrices of structural parameters. Some parameters are restricted to

0 or 1 for identification while others are to be estimated. A contains the contemporaneous

correlation coefficients among error terms while B is a diagonal matrix containing the stan-

dard deviations of structural innovations. Substituting et = A−1Bvt into equation (B-13),

we obtain

∆pt =
[

D1(L) D2(L)
] [ α′⊥

β′

]
A−1Bvt

= D1(L)α′⊥A−1Bvt + D2(L)β′A−1Bvt. (B-16)

According to equation (B-15), the initial impact of the structural innovation vt on the

level of pt is D1(0)α′⊥A−1B + D2(0)β′A−1B = θ1In−rα
′
⊥A−1B + θ2Irβ

′A−1B. The long-run

pricing impact is D1(1)α′⊥A−1B = θ1F11(1)−1α′⊥A−1B. Therefore, equation (B-16) can be
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further decomposed into

∆pt =
[

D1(L) D2(L)
] [ α′⊥

β′

]
A−1Bvt

= D1(L)α′⊥A−1Bvt + D2(L)β′A−1Bvt (B-17)

= D1(1)α′⊥A−1Bvt︸ ︷︷ ︸
(Long-run Pricing Impact

Denoted Φvt
)

+
(
D1(L)α′⊥A−1B−D1(1)α′⊥A−1B + D2(L)β′A−1B

)
vt︸ ︷︷ ︸

( Pricing Error
DenotedΦ∗(L)vt, and Φ∗(1)vt=0)

where the long-run pricing impact of innovations vt is measured by a matrix of scalars, Φ,

and the pricing error induced by the innovations has a dynamic effect, Φ∗(L), which satisfies

Φ∗(0) = θ1In−rα
′
⊥A−1B− θ1F11(1)−1α′⊥A−1B + θ2Irβ

′A−1B and Φ∗(1) = 0.

Finally, when Γ = 0 and β′A−1B = 0,

Φ∗(0) = D1(0)α′⊥A−1B−D1(1)α′⊥A−1B + D2(0)β′A−1B

= θ1In−rα
′
⊥A−1B− θ1In−rα′⊥A−1B + 0

= 0 (B-18)

When Γ = 0, then no long-run auto-correlations exist among the elements in pt. This

implies high efficiency of stock markets. When β′A−1B = 0, then the contemporaneous

innovations maintain their cointegration relations. This implies high efficiency of contempo-

raneous information transmission across stock markets. Only when these two conditions are

satisfied, stock markets are said to fully reflect new information in their own locations and

across locations.
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Appendix C

Figure C1 contains DAG results based on the innovations from our error correction model

for all eleven stock markets for the four periods. A DAG shows the causal flow among a

set of variables such that there are no directed cycles.5 The nodes of these graphs represent

variables on which data have been obtained while line segments connecting nodes (directed

edges) are generated by calculations of conditional statistical dependence among pairs of

variables (ceteris paribus). Under the assumption that variables v1, v2, v3, . . . , vn under study

follow Markov processes, one can simplify the empirical joint distribution of these variables

based on conditional statistical dependence.

Now we use X, Y , and Z to describe conditional statistical dependence among variables

v1, v2, v3, . . . , vn. For example, if there is a directed edge between variables X and Y like

X → Y , X is described as the parent of Y . In addition, a graph represented by Y ← X → Z

implies that the three variable, X, Y and Z have a relation such that X causes Y and Z. This

causal relationship implies that the unconditional association between Y and Z is nonzero

but the conditional association between Y and Z , given the knowledge of the common cause

X, is zero. Alternatively, a graph represented by Y → X ← Z implies that the unconditional

association between Y and Z is zero but the conditional association between them, given

the common effect X, is nonzero.

Following Pearl (2000), DAGs can be used to represent conditional independence as

implied by the recursive product decomposition:

Pr(v1, v2, . . . , vn) =
n∏

i=1

Pr(vi|pai), (C-1)

where Pr is the probability of variables v1, v2, . . . , vn and pai (also called parents) represents

a set of variables that immediately causes vi.

In Spirtes et al. (2000), a causal search algorithm, called the PC algorithm, is provided

for making inference on directed acyclic graphs from observational data. It begins with a

complete undirected graph, where every variable is connected to every other variable. Edges

between variable are then removed based on vanishing correlation or partial correlation, at

a predetermined level of significance. The significance level is a threshold for independence.

The higher it is set, the less discerning the PC algorithm is when determining the indepen-

5This means that it is not possible to start at a variable and follow a directed path back to the same
variable.
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dence between two variables. Spirtes et al. (2000, p. 116) recommend that one drop the level

of significance used as the number of observation increases. For small samples less than 100

observations, a significance level of 20% is recommended. For larger samples greater than

100 and less than 300 observations, they suggest a 10% significance level. In our research,

because we have over two hundred observations for each period, we set the significance level

at 10%. Therefore, if estimated correlations and partial correlations linking some variables

that form edges are not statistically significantly different from zero at the 10% significance

level, the causal search algorithm will remove those edges. The software TETRAD IV is

employed to conduct the DAG analysis.

We apply the DAG to identify the dependence among the stock markets so that we

can place zero restrictions on matrix A in our SVAR model. This strategy permits that

restrictions imposed on matrix A can accurately reflect the data generating process. The

PC algorithm sometimes generate graphs with cycles and bidirected edges, as shown in Panel

B (CN ↔ HK) and Panel D (CN ↔ HK) of Figure C1. Since ignoring undirected edges

might distort our SVAR analysis, both directions are considered for the undirected edge in

the SVAR analysis with the level of significance set to 5%.

In et = A−1Bvt of our SVAR model, two 11×11 matrices A and B have to be estimated.

Since AΣA′ = BB′, the expressions on both sides are symmetric. This fact imposes 11(11+

1)/2 restrictions on the 2×112 unknown elements in A and B. Therefore, in order to identify

A and B, we need to supply at least 2 × 112 − 11(11 + 1)/2 = 176 additional restrictions.

The parameter estimation of matrix A for the four periods are reported in Table C1. LR

tests for over-identification are also reported in Table C1.
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Figure C1: DAG-recovered patterns of contemporaneous shock transmission among eleven
stock markets during four cointegration periods

Figure C1: Panel A (Period 1) Figure C1: Panel B (Period 2)

Figure C1: Panel C (Period 3) Figure C1: Panel D (Period 4)
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Table C1: Parameter estimation of matrix A for four periods
Ai,j US UK JP HK TW SG KR IN ML CN ID

Panel A: Period 1 (Aug 24,1998-Aug 10,1999)

US 1.0000

UK
-0.3452

1.0000
-0.1553 -0.2149 0.0928

(0.0669) (0.0538) (0.0443) (0.0422)

JP 1.0000

HK
-0.6415 -0.3784

1.0000
(0.1003) (0.0847)

TW
-0.2831

1.0000
(0.0603)

SG
-0.2093 -0.5681 -0.1692

1.0000
(0.0872) (0.0580) (0.0615)

KR
-0.3308 -0.2691

1.0000
(0.1197) (0.1224)

IN
-0.6019

1.0000
(0.0946)

ML
-0.6573 -0.2125

1.0000
(0.1362) (0.0883)

CN
0.1878 -0.1610

1.0000
(0.0893) (0.0652)

ID
-0.1724

1.0000
(0.0464)

Log likelihood: 5166.19
LR test for over-identification:

χ2 (37) 41.907 [0.2664]

Panel B: Period 2 (Sep 6,2001-Aug 26,2002)

US 1.0000

UK
-0.4777

1.0000
-0.2812 -0.1661

(0.0820) (0.0919) (0.0747)

JP
-0.4482

1.0000
(0.0828)

HK
-0.2480 -0.3743

1.0000
(0.0665) (0.0547)

TW 1.0000
-0.4810
(0.0887)

SG
-0.1590 -0.4293 -0.1886

1.0000
-0.1381

(0.0580) (0.0772) (0.0445) (0.0644)

KR
-0.3096 -0.4383 -0.4104

1.0000
(0.0808) (0.0968) (0.0599)

IN
-0.1766

1.0000
(0.0425)

ML
-0.3627 -0.1055

1.0000
-0.0797

(0.0414) (0.0454) (0.0396)

CN
-0.3021 0.1787

1.0000
(0.0890) (0.0618)

ID
-0.5489 -0.0926

1.0000
(0.0832) (0.0603)

Log likelihood:
LR test for over-identification: 5782.21

χ2 (33) 26.8752 [0.6298]

Note: Parameter estimates of matrix A in the model et = A−1Bvt are reported in Panels A–D for different cointegration periods,
respectively. The elements of A show contemporaneous correlations among observed residuals. The element (i, j) of matrix A, Ai,j ,
gives how the observed residual of market i instantaneously responds to that of market j. Th table also reports the LR test results for
over-identification. Standard errors are given in parentheses, while p-values are reported in brackets.
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Table C1: Parameter estimation of matrix A for four periods—continued
Ai,j US UK JP HK TW SG KR IN ML CN ID

Panel C: Period 3 (Dec 21,2006-May 9,2008)

US 1.0000

UK
-0.4145

1.0000
-0.2479

(0.0671) (0.0353)

JP
-0.8227

1.0000
(0.0766)

HK
-0.9892

1.0000
(0.0557)

TW
-0.4324

1.0000
(0.0383)

SG
-0.3443 -0.4411

1.0000
(0.0518) (0.0388)

KR
-0.2945 -0.2565 -0.3409

1.0000
(0.0521) (0.0387) (0.0513)

IN
0.2061 -0.3599 -0.4978 -0.2833

1.0000
(0.0803) (0.0656) (0.0894) (0.0810)

ML
0.1046 -0.2112 -0.3049 -0.2364

1.0000
(0.0507) (0.0426) (0.0626) (0.0445)

CN
-0.5800

1.0000
(0.1244)

ID
-0.1975 -0.6186 0.0623

1.0000
(0.0775) (0.0582) (0.0309)

Log likelihood:
LR test for over-identification: 8526.734

χ2 (27) 30.8331 [0.4500]

Panel D: Period 4 (Oct 28,2008-Nov 20,2009)

US 1.0000

UK
-0.3606

1.0000
-0.3222

(0.0526) (0.0442)

JP
-0.6522

1.0000
0.0148

(0.0634) (0.0857)

HK
-0.8587

1.0000
(0.0741)

TW
-0.6434

1.0000
(0.0400)

SG
-0.6194 -0.2471

1.0000
(0.0453) (0.0504)

KR
-0.2569 -0.1803 -0.4533

1.0000
(0.0622) (0.0662) (0.0636)

IN
-0.2295 -0.1994 -0.2899 -0.1373

1.0000
(0.0809) (0.0745) (0.0881) (0.0671)

ML
-0.0964 -0.1124 -0.1870

1.0000
(0.0265) (0.0303) (0.0297)

CN
-0.2890 -0.3098

1.0000
(0.0710) (0.1787)

ID
-0.2683 -0.5011

1.0000
(0.1023) (0.1145)

Log likelihood:
LR test for over-identification: 6472.153

χ2 (33) 32.6746 [0.3600]

Note: Parameter estimates of matrix A in the model et = A−1Bvt are reported in Panels A–D for different cointegration periods,
respectively. The entry A examines the contemporaneous correlation among observed residuals. The element (i, j) of matrix A, Ai,j ,
gives how the observed residual of market i instantaneously responds to that of market j. The table also reports the LR test results for
over-identification. Standard errors are given in parentheses, while p-values are reported in brackets.

28



Appendix D

In this appendix, we report the contagion measures for the four periods across all stock markets

studied in this paper in Table D1. More specifically, the estimate contagion measures are reported

in an 11 × 11 matrix for each cointegration period in Table D1. The element of the matrix, Ci,j ,

measures the contagion effect from a given market j (column) to another market i (row). In every

case, the significance of the statistics is based on the Monte Carlo simulation method with 1000

replications.

Note that in Table D1 the elements in the first row, the second column and the diagonal are

empty. As we define a trading day that starts from the U.S. and ends in the U.K., the markets that

open after the U.S. market closes cannot affect the U.S. market. Hence, the contagion measures in

the first row do not exist. By the same token, the U.K. market cannot affect other stock markets

in the same trading day based on our trading day definition. Hence, the contagion measures in the

second column do not exist either. Diagonal elements are empty as there are no contagion measures

from a market to its own (Cj,j is always equal to zero).

As shown in Table D1, little contagion effect is found between some Asian stock markets (In-

donesia, Malaysia, China and India) for all cointegrated periods. Therefore, we focus on the Ci,j

values that are relevant to shocks from the U.S., Japan and Hong Kong markets.

To conduct a robustness test, we also use a different trading day definition, assuming that

a trading day starts from the U.K. market and ends in the Asian markets. We find that this

alternative trading day definition changes little to our analysis and conclusions, which are quite

robust.

To provide a context, we also report the correlations among each and every pair of market

portfolio index portfolio returns in Table D2.

29



Table D1: Estimates of contagion measures Ci,j between stock markets for four periods

Ci,j US UK JP HK TW SG KR IN ML CN ID

Panel A: Period 1 (Aug 24,1998-Aug 10,1999)
US
UK -0.0074 0.0373 0.0112 -0.0464 -0.0194 -0.0044 -0.0003 -0.0179 -0.0010 0.0079
JP -0.0029 -0.0002 -0.0074 -0.0001 -0.0005 -0.0001 -0.0031 -0.0008 -0.0026
HK 0.0380 -0.0068 -0.0895 -0.0120 -0.0168 -0.0025 -0.0026 -0.0005 -0.0030
TW 0.0324 -0.0871 -0.1415 -0.1202 -0.0011 0.0000 -0.1436 -0.0002 -0.0009
SG 0.1080 -0.1074 -0.3160 -0.0245 -0.0003 0.0000 -0.0575 -0.0012 -0.0085
KR -0.1151 0.0281 -0.3673 -0.0068 -0.1783 -0.0002 -0.0141 -0.0001 -0.0012
IN 0.0939 -0.0223 -0.1103 -0.0520 -0.1306 -0.0398 -0.0261 -0.0009 -0.0004
ML -0.0813 -0.0014 0.0117 -0.1890 -0.2623 -0.0424 -0.0170 -0.0004 -0.0043
CN -0.0811 -0.0148 -0.0508 0.0255 -0.0747 -0.0014 -0.0012 -0.0342 -0.0005
ID -0.0209 0.0002 -0.0017 0.0002 -0.0127 -0.0001 -0.0238 -0.0040 -0.0005

Mean -0.0036 -0.0235 -0.0970 -0.0392 -0.0812 -0.0107 -0.0045 -0.0304 -0.0013 -0.0015
Panel B: Period 2 (Sep 6,2001-Aug 26,2002)
US
UK -0.2302 0.0026 -0.0441 -0.0085 0.0000 -0.0008 -0.0960 -0.0135 -0.0035 0.0081
JP 0.0654 -0.0610 -0.0058 0.0000 -0.0045 -0.2966 -0.0549 -0.0101 -0.0890
HK 0.1717 0.0186 -0.1027 -0.0045 -0.0082 -0.1968 -0.0106 -0.0658 -0.0021
TW 0.0111 -0.0948 -0.2107 -0.1043 -0.0827 -0.7979 -0.7915 -0.0353 -0.5955
SG 0.0958 -0.0942 -0.1219 -0.1337 -0.0064 -0.2762 0.0000 -0.0202 -0.1381
KR 0.1335 -0.1787 -0.1025 -0.1100 -0.0050 -0.5587 -0.2201 -0.0009 -0.3151
IN -0.0967 0.0003 -0.0071 0.0307 -0.0077 -0.0286 -0.5484 -0.0524 -0.1764
ML -0.0033 -0.0099 0.0290 -0.0761 -0.0407 -0.0004 0.0111 -0.0158 -0.0298
CN -0.2650 -0.0388 -0.0306 -0.2050 -0.0130 0.0000 -0.0570 -0.3055 -0.0304
ID 0.0688 -0.0353 -0.0571 -0.0401 0.0000 0.0048 -0.1374 -0.0136 -0.0141

Mean -0.0049 -0.0478 -0.0673 -0.0724 -0.0195 -0.0141 -0.2673 -0.2176 -0.0242 -0.1520
Panel C: Period 3 (Dec 21,2006-May 9,2008)
US
UK -0.7976 0.0139 0.0222 -0.0289 -0.0123 0.0000 -0.0199 -0.0119 -0.0029 -0.0711
JP -1.4624 -0.0659 -0.1562 -0.0617 -0.0085 -0.0118 -0.0166 -0.0010 -0.0361
HK -1.0913 0.1773 -0.2358 -0.0571 -0.0142 -0.0548 -0.0288 -0.0025 -0.0960
TW -0.2348 0.1461 0.0081 -0.1415 -0.1006 -0.0025 -0.0016 -0.0018 -0.6866
SG -0.9672 0.3093 0.1693 -0.2432 -0.0239 -0.0428 -0.0385 -0.0001 -0.2930
KR -1.4103 0.2240 0.0668 0.0642 -0.0531 -0.0273 -0.0455 -0.0001 -0.1700
IN -2.3230 0.3475 0.2140 -0.2148 0.2020 -0.1403 -0.1195 -0.0057 -0.4823
ML -0.6915 0.0252 0.0155 0.0449 -0.1018 -0.0136 0.0540 -0.0006 0.0000
CN -1.8602 0.0137 -0.0325 -0.0892 0.0336 -0.0082 0.0001 -0.3973 -2.0686
ID -2.3949 0.4112 0.2315 -0.4013 -0.2429 -0.1405 -0.0001 -0.1231 -0.0058

Mean -1.3233 0.1854 0.0699 -0.1400 -0.0483 -0.0500 -0.0117 -0.0870 -0.0023 -0.4337
Panel D: Period 4 (Oct 28,2008-Nov 20,2009)
US
UK -0.1536 0.0048 0.0156 0.0011 -0.0079 -0.1217 -0.0008 -0.7890 -0.0062 0.0211
JP -0.2843 0.0000 -0.0175 -0.0283 -0.0606 -0.0360 -1.0541 -0.0164 -0.0171
HK -0.1981 0.0111 -0.0002 -0.1124 -0.1717 -0.0193 -0.9435 -0.0101 -0.0302
TW 0.0886 -0.0127 -0.2993 -0.1080 -0.0145 -0.0281 -0.6821 -0.0081 -0.0213
SG -0.2200 0.1475 0.2276 0.0371 -0.1913 -0.0621 -0.7941 -0.0005 -0.0107
KR -0.4203 0.1489 0.1068 0.0704 -0.0090 -0.2749 -1.4680 -0.0058 -0.0184
IN 0.0451 -0.1105 -0.3209 -0.0602 -0.3447 -0.1452 -0.3279 -0.0138 -0.1075
ML -0.0223 -0.0603 -0.0480 -0.0044 -0.0145 0.0006 -0.0903 -0.0011 -0.0056
CN 0.0371 0.0410 -0.1421 -0.0120 -0.0112 0.0001 -0.0041 -0.2706 -0.0077
ID -0.2630 0.1458 0.0562 -0.0143 0.1128 -0.1244 -0.0005 -0.3131 -0.0128

Mean -0.1391 0.0351 -0.0449 0.0000 -0.0581 -0.0921 -0.0573 -0.7381 -0.0083 -0.0219

Note: The contagion measure Ci,j from market j (column) to market i (row)

(
Ci,j =

(
Φi,j+Φ∗(0)i,j
Φj,j+Φ∗(0)j,j

)2

−
(

Φi,j
Φj,j

)2
)

is

reported for different cointegration periods. In every case, the significance of a contagion measure is based on the Monte
Carlo simulation method with 1000 replications. The 5% quantile of Ci,j that is greater than 0 (in bold font) indicates a
significant contagion effect. The mean contagion measures are also reported for all markets and periods.
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Table D2: Correlations among the eleven stock market portfolio daily returns

US UK JP HK TW SG KR IN ML CN ID

Panel A: Correlation matrix, July 3,1997-April 30,2014
US 1.0000
UK 0.3977 1.0000
JP 0.5096 0.4036 1.0000
HK 0.4919 0.4717 0.5551 1.0000
TW 0.3864 0.3088 0.4497 0.4996 1.0000
SG 0.4195 0.4490 0.5099 0.7240 0.5077 1.0000
KR 0.3727 0.3440 0.4888 0.5369 0.4854 0.4997 1.0000
IN 0.2906 0.2741 0.3586 0.5043 0.3576 0.5191 0.3914 1.0000
ML 0.2824 0.2277 0.2817 0.4403 0.2927 0.4631 0.3224 0.4250 1.0000
CN 0.1496 0.1039 0.1904 0.2750 0.1757 0.1997 0.1343 0.1673 0.1329 1.0000
ID 0.2666 0.3341 0.3392 0.4610 0.3261 0.4470 0.3543 0.3713 0.2435 0.1767 1.0000

Mean 0.3567 0.3241 0.3967 0.4916 0.3575 0.4257 0.3006 0.3212 0.1882 0.1767
Panel B: Correlations, December 21,2006-May 9,2008
US 1.0000
UK 0.3567 1.0000
JP 0.4361 0.5147 1.0000
HK 0.4952 0.5631 0.8195 1.0000
TW 0.5683 0.4505 0.6258 0.6825 1.0000
SG 0.5021 0.6265 0.7489 0.8764 0.6721 1.0000
KR 0.4465 0.6188 0.7805 0.8025 0.7031 0.8005 1.0000
IN 0.4798 0.5945 0.6850 0.8406 0.6410 0.8674 0.7781 1.0000
ML 0.5912 0.4881 0.6119 0.7521 0.7511 0.7736 0.7011 0.8290 1.0000
CN 0.2681 0.2270 0.3478 0.4762 0.4116 0.3587 0.2818 0.3671 0.3898 1.0000
ID 0.4012 0.5382 0.6479 0.7686 0.5955 0.7154 0.6668 0.7550 0.6913 0.4592 1.0000

Mean 0.4545 0.5135 0.6584 0.7427 0.6291 0.7031 0.6070 0.6504 0.5405 0.4592

Note: The correlations are calculated based on the daily market portfolio return data for the U.S. (US), U.K. (UK),
Japan (JP), Hong Kong (HK), Taiwan (TW), Singapore (SG), Korea (KR), Indonesia (ID), Malaysia (ML), China
(CN), and India (ID). The U.S. data at t − 1 are aligned with the data of other countries at t due to the selected
time zone order from the U.S. stock market, to the Asian stock markets, and, then, to the U.K. stock market.
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