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Abstract

This paper introduces statistical learning in an asset pricing model of differences of opinions. I

show that the model converges globally to the unique rational-expectation equilibrium and

furthermore I show that asset prices drift predictably in its neighborhood. Accordingly,

the model offers a unifying perspective between two so-far mutually exclusive strands of the

asset pricing literature. Learning preserves all the desirable features offered by the rational-

expectations hypothesis (i.e. the traders use efficiently both the private and the public

information available) while yet implying asset prices that drift predictably in the ex-ante sense

of Banerjee, Kaniel, and Kremer (2009). Furthermore, I obtain a number of new empirically

testable hypotheses related to price drift from a series of Monte Carlo explorations of a model

of differences of opinion with learning.

1 Introduction

Asset prices are inertial: an increase in the price of a stock in the past is predictive of future

increases, and this fact is often referred to as “price drift.” This well-known empirical regularity

was first documented by Jegadeesh and Titman (1993) and in order to explain this finding, the

theoretical literature has emphasized the slow aggregation process of heterogeneous beliefs held by

the market participants. The empirical literature confirms that belief heterogeneity is associated

with drift in prices (see Verardo (2010) and Hommes (2011) for example). The notion of belief

heterogeneity puts a strain on the representative agent fiction, and it increases the complexity

of the models since it becomes necessary to deal with the problem of “forecasting the forecasts

of others” as the intuition originally formulated by Keynes (1936) was put by Townsend (1983).
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Currently, there are two alternative modeling paradigms to incorporate belief heterogeneity in asset

pricing models: on the one hand, the rational-expectations approach stresses the presence of private

noisy information that is gradually incorporated into the asset’s prices, and on the other hand, the

differences-of-opinion approach that assumes that the traders disregard public information and

focus on their private information: they simply “agree to disagree.”

These approaches are largely viewed as incompatible by the current literature, yet both present

advantages and limitations. The rational-expectations model of Allen, Morris, and Shin (2006)

shows that in a dynamic setting with repeated trading the presence of beliefs heterogeneity breaks

the martingale property of expected prices, thus generating a drift in the price of an asset towards

its liquidation value. Importantly, this kind of drift is shown to exist in an ex-post sense, i.e. it

is conditional on the liquidation value of the asset. As argued by Banerjee et al. (2009), the drift

that properly explains the empirical regularities, must be in an ex-ante sense (i.e. it must not

be conditional on future observables) and they show that a rational-expectations approach cannot

produce this outcome. On the other hand, models of differences-of-opinions will deliver price drift,

under certain conditions, but their tractability requires very strong and unrealistic assumptions. In

particular, in such models it is typically assumed that (i) the private signals are common knowledge

in the traders’ population and (ii) the traders stick to their beliefs, irrespective of their forecasting

performance. These assumptions challenge the very idea of rationality: if other traders’ beliefs are

fully known and they lead to better predictions, then rational traders should immediately adopt

the most accurate belief systems.1

This paper offers a unifying perspective through a model of learning. I show that a model

featuring diverse beliefs converges to the the representative-agent rational-expectation equilibrium

when the traders learn which beliefs provide better forecasts –in a statistical sense– and discard

the poorer ones to instead adopt the stronger beliefs. I also show that, under certain conditions,

the price dynamics are characterized by inertia in the ex-ante sense of Banerjee et al. (2009). The

learning process yielding these results is new: at the end of each trading period, the traders collect

and use both the public information (the market clearing price) as well as some limited information

about the distribution of beliefs in the population of traders. More specifically, random pairs

of traders are assumed to mutually disclose their beliefs and use the market clearing price to

1A strong argument in favor of this view is based on evolutionary grounds: those traders that do not adopt the
“correct” expectational model will be impoverished and driven away from the trading floor – see Friedman (1953)
for an early and cogent exposition this concept.
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rank these beliefs based on likelihood ratios. Given initial conditions, the learning process evolves

endogenously: the distribution of beliefs in the traders’ population determines the market clearing

price of the asset, and in turn this determines the new distribution of beliefs. This learning model

therefore allows for a significant reduction in the free parameters required by rational-expectations

models, since there is no necessity of a myriad of external sources of information emitting the private

signals received by the traders.

The learning literature on asset prices has focused on a variety of topics related to this paper.2

Brock and Hommes (1998), Brock, Hommes, and Wagener (2005), Branch and McGough (2008),

Waters (2009), and Brock, Hommes, and Wagener (2009) use evolutionary model selection dynamics

that are closely related to the dynamics of this paper. These papers conduct bifurcation analyses

of various alternative population dynamics and they all find that apparently simple dynamics of

selection of beliefs may reach chaotic complexity. All of these papers assume that beliefs selection

dynamics are governed by past profitability, rather than maximum likelihood. De Grauwe and

Markiewicz (2013) present compare these two alternative approaches in the context of forecasting

currency exchange rates. Asset pricing models with statistical learning are also considered by

Branch and Evans (2006), who introduce the concept of a misspecification equilibrium: belief

heterogeneity may persist in an equilibrium provided that all of the alternative belief systems are

equally misspecified. Branch and Evans (2011) show that in a framework in which agents learn

about the risk-return trade-off there are recurring bubbles in the asset prices. LeBaron (2012) shows

that several interesting empirical facts about asset prices can be reproduced by a simple model of

learning with heterogeneity, but the issue of price drift is not addressed there.

Finally this paper is also related to Weibull (1997, Chapter 5), providing a basic framework

exploited by the model of this paper, and to De Long, Shleifer, Summers, and Waldmann (1990),

considering non-rational traders. While in this paper there is no distinction between rational and

“noise” traders, the traders of the model presented in Section 2 will not arbitrage away all deviations

of prices from their subjective expected values, very much based on the same intuition uncovered

by De Long et al. (1990): as long as the traders perceive a risk that others may disagree with them,

they will be willing to only take finite positions in the risky asset.

The paper proceeds as follows: Section 2 contains a mathematical formulation of the model,

Section 3 presents the convergence results, and Section 4 contains the local results on price drift.

2See Evans and Honkapohja (2013) for an extensive survey of this literature.
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Section 5 provides an in-depth comparison with the relevant existing literature and Section 6 extends

the analysis of the model through a series of Monte Carlo experiments. Section 7 concludes.

2 A Model of Different Opinions with Learning

A continuum of traders i ∈ I = [0, 1] live for two periods and have a unit exogenous lifetime

endowment. At the beginning of the first period a trader chooses a portfolio allocation between a

safe and a risky asset so as to subjectively maximize a CARA expected-utility function. The safe

asset is the numeraire, it yields a return r normalized to zero in each period, and it is available in

unlimited supply. The risky asset is underwritten by the traders themselves and it has the same

characteristics of the safe asset. However, this asset is in zero net supply and its price is determined

by a market-clearing condition, thus involving the risk of capital gains and losses. The traders do

not have complete knowledge of the distribution of beliefs in the population and thus they treat the

next-period price of the risky asset as a random variable with a specific Gaussian distribution, which

I will refer to as the trader’s beliefs. The set of possible beliefs is discrete and finite and it will be

denoted by φ = {φ1, . . . , φK}, for finite but possibly large K, where φk denotes a normal probability

density function with mean µk and variance σ2
k. The elements of the set φ are all distinct, and there

is no belief that may lead to a default on the risky asset.3 Let xt = (x1,t, . . . , xK,t)
′ ∈ ∆ denote

the distribution of traders over φ, where ∆ is the K dimensional simplex. A trader active at time

t, having beliefs φk maximizes

maxEk

[
− exp

(
−1

2
γWt+1

)]

Wt+1 = 1 + λk,t (pt+1 − pt)

where Wt+1 is terminal wealth, Ek is the expectational operator relative to φk, γ is the risk aversion

parameter, and the trader’s endowment has been normalized to one. Exploiting the normality of

3Random occurrences of bankruptcies can be fit into this modely by assuming that the supply of the risky asset
is stochastic, and that the losses and gains from such occurrences are shared equally by all the traders active in the
risky asset market. Analytical tractability requires a non-random supply of the risky asset, however, I will consider
this possibility explicitly in Section 6.
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the beliefs, the demand for the risky asset of a trader with beliefs k is

λk,t =
µk − pt
γσ2

k

. (1)

Equation (1) shows that as long as σk > 0 trader k will not be willing to arbitrage away all the

deviations from the mean µk as in De Long et al. (1990). Imposing the market clearing condition

yields
K∑
k=1

xk,t
µk − pt
γσ2

k

= 0 (2)

which implicitly solves for the current price of the risky asset pt. The market clearing price, as

defined by (1), is a linear function of xt which will be denoted by p : ∆ 7→ R+. After trading takes

place and the market clears, the price is broadcast publicly, while each trader receives a private

noisy signal about a belief system randomly selected from the population. At the beginning of their

second period the traders sell their contracts and they are replaced by another young trader with

the same beliefs.4

Before retirement, trader i ∈ I, endowed with beliefs φk ∈ φ chooses whether the newly observed

beliefs φj are preferable by calculating the likelihood of the price pt. The original beliefs are

maintained if and only if

ζiφk(pt) ≥ φj(pt) (3)

where ζi is a real random variable with uniform cumulative distribution Φ having a positive support

centered on one. This random factor can be thought of as an idiosyncratic component in the trader’s

priors, or alternatively as noise affecting the observation of the performance of the alternative beliefs.

From the mathematical stand point, the idiosyncratic shocks ζi serve the purpose of removing the

discontinuity implied by the choice between pairs of beliefs. The behavioral assumption embodied

in equation (3) is a natural choice that is consistent with the emphasis in the statistics literature

on maximum likelihood estimation and likelihood ratio tests. Here I posit this a natural principle

for revising forecasts.

4This set up captures the portfolio selection process in a principal–agent framework with asymmetric information.
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The Population Dynamics. The unconditional probability that agent i ∈ I, having beliefs

φk ∈ φ adopts beliefs φj ∈ φ is

ρit,k→j = xt,jΦ

(
φj(pt)

φk(pt)

)
which, given the uncountable number of traders, is independent of i . Therefore while the adoption

of competing beliefs is stochastic at the individual level, the aggregate dynamics are nevertheless

deterministic. The flows of traders over the various elements of Φ are governed by the following

system of difference equations (derivation in the appendix)

xk,t+1 =
φk(pt)∑
j xj,tφj(pt)

xt,k, k = 1, . . . ,K. (4)

which is the discrete version of the well-known replicator dynamics. These equations, together with

the pricing equation (2) define a map from and to the K-dimensional unit simplex F : ∆ 7→ ∆

which governs the population dynamics and it will be the subject of the rest of the paper.

3 Rational-Expectation Equilibrium and Its Stability

Under the assumption of a representative rational trader, the market equilibrium of this model

would most simply imply no trading of the risky asset and its price would be undetermined. This

is because the two assets offer the same returns and the agent’s risk aversion implies that utility is

maximized by trading only in the non-risky asset.5 Furthermore, the zero net-supply for the risky

asset necessarily implies that the representative agent demand for it is zero at the equilibrium.

These considerations motivate the definition that follows.

Definition 1. The representative-agent Rational-Expectation Equilibrium (REE) for the model

of differences of opinions with learning is attained at time T if λk,t = 0 for all t ≥ T , and all

k = 1, . . . ,K such that xk,t > 0.

The rationale behind this definition is the equivalence in observable market outcomes: traders

may disagree at the equilibrium, as long as their disagreement leads to trading positions that are

5The terminology here seems to lead to a paradox: if there is a representative trader then there could be no
disagreement and hence the notion of “risky asset” loses its meaning. This logical difficulty is avoided through the
standard assumption that the representative agent does not take into account its own role on the aggregate dynamics.
In the specific terms of the model considered here, under this assumption the asset in limited supply bears a risk
from the perspective of the representative trader while being effectively riskless at the equilibrium.
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observationally equivalent to a rational-expectations equilibrium with a representative trader. The

following lemma is a straightforward consequence of equations (1), (2), and (4).

Lemma 1. Each of the K vertices of ∆ is both a steady-state for the population dynamics (4) and

an REE.

proof: Suppose that population state x̄t0 is such that x̄k,t0 = 1 for some k ∈ {1, . . . ,K} and t0.

Clearly, equations (4) imply that xj,t = 0 for all j ∈ {1, . . . ,K}, j 6= k and for all t > t0, hence x̄t0

is a steady-state. Equation (2) implies that at x̄t0 the market clearing price is µk and equation (1)

implies that λk,t = 0 for all t > t0.

�

This Lemma, despite its simplicity, has important implications for the logic of what follows. First,

Lemma 1 does not imply the existence of multiple rational-expectations equilibria. Rather, all the

vertices of the K-dimensional simplex represent possible instances of the same REE: according

to Defintion 1, this multiplicity is irrelevant to the market outcome and hence it does not yield

equilibria multiplicity.6 Furthermore, according to Lemma 1, the REEs on the vertices of ∆ are

those stable situations in which traders learn to agree, and hence they are of central interest for the

purpose of this paper. However, there are quite a few other possibilities that may arise from the

dynamics implied by equations (4). First of all, there may be steady-states located not on a vertex

of ∆, provided that the population shares and their trading positions produce a price that implies

that all beliefs are equally likely. Such situations, in general, do not constitute an REE according

to Definition 1: in the interior of the simplex where belief heterogeneity persists, the individual

demands for the risky asset are in general different from zero. Finally, there could exist cycles for

F which may either be REE or not. The objective of the rest of this section is to show that the

only asympototically stable situation is the REE in which agents learn to agree.

Definition 2. Let d denote the Euclidean metric in the simplex ∆. A population state x ∈ ∆ is

asymptotically stable if there exists a positive real number ε and y ∈ ∆ such that

d(x, y) < ε→ lim
n→∞

d(Fn(x), Fn(y)) = 0

6The existence of multiple instances of the same equilibrium has its roots in the notion of an equilibrium with
a representative and rational agent where there is no trading in the risky asset and its price is indeterminate. This
price indeterminacy corresponds to the multiplicity of instances of the same REE implied by Lemma 1.
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where Fn denotes the n-th iteration of F .

Vertex and Interior Rest Points. I first consider the non-cyclical instances of the steady states

of the population dynamics F , and I prove that only the REE equilibria located on particular vertices

of the simplex are asymptotically stable, while interior rest points are not.

Proposition 1. Let φ̃ ⊆ φ be the set of pdfs that are maximal in a neighborhood of their respective

mean

φ̃ := {φk ∈ φ : φk(p) ≥ φj(p),∀φj ∈ φ, |p− µk| ≤ ε, for some ε > 0}.

Population states for which xk = 1 are asymptotically stable under F if and only if φk ∈ φ̃. Other

non-cyclical population states that are steady-states of F are not asymptotically stable.

proof: Clearly the finiteness of φ implies that φ̃ is not empty. Denote with x̄ a population

state in which the whole mass of traders adopts beliefs k, that is x̄k = 1 where φk ∈ φ̃. The risky

asset’s price that clears the market in this case is µk, the mean of the distribution φk, as shown

by equation (2). Since the pricing function p is linear, it is possible to find a small number ε > 0

such that any population state for which d(x, x̄) < ε implies that xk = 1 − δ for some δ > 0,

and p(x) is close to µk so that φk is still maximal with respect to all the other beliefs. Hence, by

denoting the k-th component of F (x) as [F (x)]k, equations (2) and (4) imply that [F (x)]k > xk

and |p(F (x))−µk| < |p(x)−µk|. Because φk is symmetric around µk, the new price p(F (x)) is still

in the region where φk is maximal, and it follows by induction that Fn(x)→ x̄ as n→∞. On the

converse, if φk /∈ φ̃ an arbitrarily small ε that keeps the price where φk is maximal does not exist

and this concludes the first part of the proof.

Consider now, a point x̆ not on a vertex of ∆, such that F (x̆) = x̆. The necessary condition

for this to be an equilibrium is φk(p(x̆)) = φj(p(x̆)) for all k and j such that x̆k, x̆j > 0. By

the assumption that φk and φj are not identical it follows that any x in an arbitrarily small

neighborhood of x̆ is such that either φk(p(x)) > φj(p(x)) or φk(p(x)) < φj(p(x)). Hence x̆ is not

stable under F . It is straightforward to extended this argument to situations with more than two

beliefs present in the population and this concludes the proof.

�

The intuitive reasoning behind the proof of Proposition 1 is illustrated in Figure 1: the thick

line is a belief system that does not belong to the set φ̃ since it not maximal around its own mean.
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Figure 1: An illustration of the intuition behind Proposition 1.

As the other two distributions depicted in this Figure intersect exactly at its peak, this distribution

is not asymptotically stable. On the converse, the dotted and dashed distributions both belong to

φ̃. Furthermore, while the distribution that is not in φ̃ is maximal in other regions of the real line,

this has no bearing on its asymptotic stability. In fact, the trading that results from each belief

system pushes the market price towards its mean. For this reason, in the conditions illustrated in

Figure 1, if the initial price was at the point marked by the vertical line, the population’s mass

would converge to one of the two beliefs in φ̃.

Figure 1 also provides an illustration of the second part of Proposition 1. Suppose that the

intersection of the dotted and the dashed beliefs is a rest point of the population dynamics. Clearly

any generic change in the population composition, however small, will either increases or decreases

the price, and therefore it will unavoidably tilt the balance between the two beliefs, causing the

population to amass on either one of them.

Cycles. A straightforward extension of the argument in the second part of Proposition 1 shows

that cycles are not asymptotically stable in this model.
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Proposition 2. Let n be a positive finite integer. If there exists an n-cycle of F , it is not

asymptotically stable.

proof: Consider an n-cycle for finite integer n ≥ 2, such that x1 = F (xn) = F (xn−1) = · · · =

F (x1). Because the dynamics implied by F imply that for any k = 1, . . . ,K the condition xk,t = 0

implies xk,t+τ = 0 for τ = 1, 2, . . . a non-degenerate cycle cannot involve the vertices of ∆. The

second clause of Proposition 1 is therefore directly applicable to each of the population states

x1, . . . , xn thus concluding the proof.

�

Propositions 1 and 2 imply that –provided that there are no strange attractors for F– the

population dynamics are globally convergent to the REE in which traders learn to agree.7 This is

the first main result of the paper: a parsimonious model of different opinions, without the common

knowledge assumption and with learning, converges globally to the REE model with agreement. The

section that follows shows that together with this desirable outcome, the model is also consistent

with predictable drift in prices.

4 Price Drift

Banerjee et al. (2009) define price drift in terms of conditional expectations. According to their

definition, a stochastic price process exhibits drift if E[pt+1−pt|pt−pt−1] is increasing in pt−pt−1.

Clearly, this definition is based on the understanding that prices tend to increase. However, there

is no obvious theoretical reason to exclude that prices may be drifting downward if short sales are

possible and just as costly as outright purchases, as assumed here. For this reason, I adapt the

above mentioned stochastic definition to the deterministic setup considered here and include the

possibility of downward drift.

Definition 3. Prices exhibit predictable drift if larger price changes at t are followed by larger

changes at t+ 1, in the same direction.

7The numerical analysis of Section 6 confirms that chaos is not likely to arise in this model. See Section 5 for a
discussion.
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Clearly this definition is just a rephrasing of that of Banerjee et al. (2009) for a non-stochastic price

process. In Section 6, where I introduce exogenous supply shocks, I will use directly the stochastic

definition.

Proposition 3. Prices drift predictably in some neighborhoods of the REE with agreement.

proof: Let x̄ be such that x̄k = 1 for some k satisfying φk ∈ φ̃. By Lemma 1, x̄ is an REE with

agreement. Let x be in a neighborhood of x̄ and furthermore let x → x̄. This ensures that the

following sequence {Fn(x)}∞n=0 of populations states is entirely contained in an interval where φk is

maximal. Proposition 1 shows that such a point x exists. Again, by denoting the k-th component

of F (x) as [F (x)]k, equations (4) imply that

[Fn(x)]k > [Fn−1(x)]k > · · · > [F (x)]k > xk (5)

Consequently, as the share of traders using beliefs k increases the price gets closer and closer to µk

implying |p(Fn(x)) − µk| < · · · < |p(x) − µk|. The quantities within the absolute value operators

have all the same sign, since otherwise (5) would be violated. Accordingly, the sequence of prices

{p(Fn(x))}∞n=0 is a monotone converging sequence. Therefore, along an asymptotically convergent

path, if n2 > n1, price changes at n2 are both smaller and preceded by smaller price changes than

at n1, so that larger price movements are followed by larger successive changes.

�

According to this proposition prices follow a predictable sequence of adjustments of decreasing

magnitude toward the REE. The early elements of this sequence are both larger and followed

by larger changes than elements that are further along this sequence. Therefore, this sequence

constitutes price drift according to Definition 3. Crucially, the notion of predictable drift imposes

no constraints of causality: according to Definition 3, there is predictable price drift even if price

changes of larger magnitude do not cause larger future changes, as long as they are happening in

a predictable temporal sequence. This is also true for the stochastic definition of Banerjee et al.

(2009) which by requiring that E[pt+1 − pt|pt − pt−1] is increasing in pt − pt−1 impose constraints

exclusively on the correlations produced by the model. In a deterministic setup these correlations

are perfect, and Proposition 3 shows that they are caused by iterations of F : belief heterogeneity

with learning implies that larger changes in prices are preceded by even larger ones.
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5 Discussion

This section contains a detailed comparison of the results of Sections 3 and 4 with the existing

literature. First, Proposition 3 indirectly confirms that prices do not drift in an REE, as argued

by Banerjee et al. (2009). The model of section 2 does not yield drift at an asymptotically stable

equilibrium, however, drift is present in a possibly small neighborhood of the equilibrium. I will

illustrate numerically in Section 6 that the limitations of local analysis are not too restrictive here,

by showing that there are situations in which drift exists on large regions of ∆. Banerjee et al.

(2009) prove that models of difference of opinions are consistent with drift in asset prices only

under specific conditions about the disagreement among traders. More specifically, they define two

orders of disagreement for traders: the first order of disagreement requires traders to share beliefs

about the distribution of the private information received by the agents, but to disagree on the

joint implications of these signals for the asset price. Disagreement of higher-degree requires that

traders have different beliefs about the distribution of the private information. According to these

definitions, the model of this paper is characterized by first-order disagreement and according to

Proposition 2 of Banerjee et al. (2009), prices should not drift in it. However, the contradiction

implied by Proposition 3 is only apparent, and it is explained by the endogeneity of public signal

(price) produced by the model of Section 2. In a neighborhood of the REE, the market price is

close to the value considered maximally likely by some belief φk, which imply that those traders

that are given knowledge of φk find it compelling. When the share of the population believing in φk

increases, the price moves even closer to the mean of φk and this causes endogenous dependence of

the price on its previous value. This is a possibility explicitly considered by Banerjee et al. (2009)

who agree that price drift may be a result of serial correlation in the public signal. However, they

only mention the case in which this serial correlation is introduced exogenously through the noise

process rather than produced endogenously by the beliefs selection process.

The dynamics of Brock and Hommes (1998), Branch and McGough (2008), and Waters (2009)

are motivated differently from the model of this paper, but they all are similar both in spirit and

mathematically to (4). The common thread linking these papers is that all these models display very

interesting bifurcations as a certain key parameter of the model increases. Using the terminology

of Brock and Hommes (1998), this key parameter is called “intensity of imitation” and it controls

how aggressively are the traders seeking to discover the best predictor of future prices, and how

12



keen they are to adopt them. While the role of this parameter has not been explicitly highlighted

this far, in this paper it corresponds to the expected value of the random variables ζi. It is natural

here to assume that on average, the traders are unbiased judges of the likelihood of their beliefs

relative to the alternative they observe. However it would be possible to analyze the changes in

the dynamics of the model when agents have a bias towards the new beliefs and are more likely to

adopt them. While interesting, an analysis of the bifurcations in this model is nevertheless outside

the scope of this paper.

There is another important difference from the cited literature concerned with bifurcations

in similar models. The traders in this paper condition their choice of beliefs exclusively on the

most recent price level, and this is crucial for the analytical tractability of the model. The

motivation is the assumption that agents understand that the process generating the price data

is not stationary during the learning dynamics, and hence its ergodicity is not guaranteed. Brock

and Hommes (1998), Branch and McGough (2008), and Waters (2009) assume that the traders

judge the performance of the various beliefs based on a history of past returns rather than only on

the latest data point. Prompted by this literature, I will also consider the case in which agents use

longer data sets to choose beliefs in Section 6.4 where I show the results of several Monte Carlo

experiments that suggest that this assumption is not likely to drive the results of this paper.

The concept of a misspecification equilibrium in Branch and Evans (2006) corresponds to an

equilibrium located in the interior of the simplex using the terminology of the present model. I find

that these equilibria are not asymptotically stable but Branch and Evans (2006) show that there

are instances of misspecification equilibria that are learnable when agents use econometric models

of learning. In terms of the structure developed here, only by assuming an uncountably infinite set

of beliefs φ, this model could nest this kind of learning, and most likely, the finiteness of φ is instead

determinant for the asymptotic instability of the interior steady-states. A more general analysis of

the conditions in which equilibria with heterogeneous beliefs are learnable is an interesting topic

for future research.

6 Numerical Analysis

In this section I use numerical methods to analyze in further detail the learning model of Section

2. The analytical results of Sections 3 and 4 are local and as such, they provide no indication
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on whether the neighborhoods in which prices drift are large enough to be empirically relevant.

Furthermore, for the sake of tractability, I have not considered so far the presence of random shocks

to the price dynamics. However, randomness is a ubiquitous feature of asset pricing models, and

therefore I will introduce in the model two separate sources of exogenous shocks. First, consistently

with much of the existing literature, I will modify the model to have a random net supply of the

risky asset. As suggested in the introduction, it is possible to interpret these shocks as the result of

idiosyncratic bankruptcies in the presence of a risk sharing mechanism that redistributes equally any

capital gain or loss associated with these events. Second, I will also consider exogenous shocks to

the population composition. Such shocks can be interpreted as failures of the laws of large numbers

to deliver perfectly deterministic dynamics. Accordingly, one can interpret the magnitude of these

shocks as inversely related to the number of traders present in the population. Alternatively, one can

think of these shocks as originating from random inflows and outflows to and from the population

of traders.

In the remainder of this Section I will seek to answer the following questions: (1) is price-drift

a global feature of this model? (2) Do random shocks affect the probability and magnitude of price

drift? (3) Is price drift also present if agents have robustness concerns about their portfolios? (4)

Is drift more likely and/or stronger when there is more disagreement in the market? (5) Is drift

present when traders use longer time series to rank and choose beliefs? (6) Is the belief selection

process consistent with the maximization of expected return or is it possible to find more profitable

alternatives?

6.1 Non-Local Drift Analysis

To investigate the prevalence of price drift in this model, I conduct a Monte Carlo experiment with

10 different beliefs. Each element φk ∈ φ, k = 1, 2, . . . , 10, is randomly chosen by drawing µk from

a uniform distribution on [1, 3] and σk from a uniform distribution on [0.2, 1]. After choosing a

random initial point of the simplex ∆, I iterate on the dynamics (4) until the price for the risky

asset reaches a steady state. The following AR(1) functional form is then fit to the data produced

by the simulation

pt+1 − pt = α0 + α1(pt − pt−1) (6)
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as to obtain a linear expectation function for pt+1 − pt conditional on pt − pt−1. The average

for the parameter α1 over 10,000 repetitions of these calculations is 0.7685 which implies that

drift is a common feature of the asset prices in this model. In the vast majority (94.67%) of the

replications the coefficient α1 is positive thus indicating that under this parameterization drift is

globally pervasive feature of this model.

The first row of Table 1 contains these numbers together with the results from experiments

that include normally distributed random shocks. The first pair of columns present the results

relative to the shocks in the net supply of the risky asset in correspondence of their standard

deviation.8 Clearly, prices drift predictably in the presence of moderate shocks to the net supply of

the risky asset, but as these grow in magnitude, both the importance and the prevalence of price

drift decrease. The percentage of Monte Carlo replications for which the parameter α1 is positive

and significant at the 5% level drops from 89.02% to 38.23% when the standard deviation of the

supply shocks goes from 0.01 to 0.10.

Supply Shocks Population Shocks
σp/x ᾱ1 α1 > 0 ᾱ1 α1 > 0

0.00 0.7685 94.67% 0.7685 94.67%
0.01 0.7732 89.02% 0.6108 75.54%
0.05 0.4781 64.86% -0.0332 15.61%
0.10 0.1761 38.23% -0.2349 2.13%

Table 1: Global prevalence of price drift. Each row identifies the standard deviation of the shocks
hitting the market in each period and each pair of columns reports (i) the average value for the
parameter α1 from equation (6) and (ii) the percentage of Monte Carlo replications for which this
parameter is positive and significant at the 5% level.

The second set of columns in Table 1 report the effects of random shocks to the population

state in the simplex ∆. These shocks are assumed to displace the current population state xt in

a random direction by a normally distributed random amount.9 Clearly, the picture conveyed by

these results is consistent with that pertaining to supply shocks, although more extreme: when the

8The relative magnitude of the standard deviation of these shocks is best framed in relation to the unitary
population size under the interpretation that a random supply shock can be taken to represent a share of of the
population to default on their obligations.

9Obviously, these shocks require that the population state is not pushed outside the unit simplex ∆. I enforce
this constraint by assuming that the boundaries of the simplex act as absorbing barriers.
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shocks to the population composition are large enough, prices stop drifting on average and only in

a small region of the simplex do they drift predictably.

There are two main conclusions that can be drawn from these results. First, these results

illustrate that the local nature of Proposition 3 may not be a severe limitation for this model

to produce drift. Second, Table 1 suggests two empirically testable hypotheses: prices of assets

characterized by frequent changes in their supply of public equity are less likely to drift than prices

of assets with more stable ownership. Furthermore, if one interprets the shocks to the population

state as failures of the laws of large numbers to deliver deterministic aggregate dynamics it is

possible to see that this model predicts that prices of assets with many market participants are

more likely to drift than markets in which the number of traders is smaller.

6.2 Robustness and Risk Aversion

In the model of this paper the traders understand that their subjective beliefs about the distribution

of the next-period asset price are subject to revisions. Accordingly, the traders may want to

adopt a more conservative approach in their trading by making choices that are robust to model

misspecification in the sense of Hansen and Sargent (2008). Maenhout (2004, proposition 1) shows

that in the environment studied here, robustness concerns take the form of an additive term to the

risk aversion parameter. Hence, it is straightforward to investigate the effect of robust portfolio

allocations on predictable drift by increasing the value of the parameter γ and adopting a Monte

Carlo strategy as in the previous section.

No Shocks Population Shocks
σx = 0.01 σx = 0.05 σx = 0.10

γ ᾱ1 α1 > 0 ᾱ1 α1 > 0 ᾱ1 α1 > 0 ᾱ1 α1 > 0

2 0.7736 94.68% 0.6099 75.44% -0.0337 15.40% -0.2348 2.23%
5 0.7722 94.89% 0.6135 75.58% -0.0356 16.19% -0.2361 2.14%
10 0.7651 94.40% 0.6080 75.24% -0.0281 16.48% -0.2320 2.25%

Table 2: Prevalence of drift with varying degrees of risk aversion in the presence of no shocks and of
shocks to the composition of the population. Each pair of columns reports (i) the average value for
the parameter α1 from equation (6) and (ii) the percentage of Monte Carlo replications for which
this parameter is positive and significant at the 5% level.
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σp = 0.01 σp = 0.05 σp = 0.10
γ ᾱ1 α1 > 0 ᾱ1 α1 > 0 ᾱ1 α1 > 0

2 0.7094 83.93% 0.1883 39.43% -0.1333 13.47%
5 0.4707 63.71% -0.2297 6.70% -0.4125 0.17%
10 0.1821 39.05% -0.4108 0.18% -0.4756 0.00%

Table 3: Prevalence of drift with varying degrees of risk aversion in the presence of supply shocks.
Each pair of columns reports (i) the average value for the parameter α1 from equation (6) and (ii)
the percentage of Monte Carlo replications for which this parameter is positive and significant at
the 5% level.

Table 2 shows that robustness concerns on the part of the traders do not have an effect on

predictable price drift, in the case of no random shocks and of shocks to the distribution of beliefs

in the traders’ population. The percentages of iterations in which the autoregressive parameter α1

is positive and its average do not change significantly as the risk aversion parameter is increased.

On the converse, Table 3 shows that the joint presence of robust portfolio allocations and shocks

to the supply of the risky asset are sufficient for eliminating predictable drift from this model’s

parameterization, even for the case of small shocks. This suggests yet another empirically testable

hypothesis: according to this parameterization of this model, shocks to the supply of a stock should

interact significantly and negatively with risk aversion in a regression predicting price drift.

6.3 Disagreement and the Intensity of Drift

Verardo (2010) finds that the dispersion of opinions of financial analysts is a significant predictor of

the returns to a particular stock when interacted with past returns. It is by no means obvious that

in the theoretical framework of Section 2 the intensity of the drift should be positively correlated

with a measure of disagreement: the constraints imposed by the model’s edifice do not rule out the

possibility that fewer beliefs produce a stronger drift. This section explores this issue numerically

to show that the model proposed here is consistent with this empirical regularity.

I measure the disagreement between beliefs φk and φj by the Hellinger distance between the

two normal distributions, defined as

δ(φk, φj) =

√√√√1−
√

2σkσj
σ2
k + σ2

j

exp

(
−1

4

(µk − µj)2
σ2
k + σ2

j

)
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This metric is easily computed and it depends on the distributions’ variances and averages, which

are crucial in the model, unlike other measures such as differential entropy. Using δ as measure

of disagreement between a pair of traders, it is possible to build a measure of disagreement in the

general population by calculating the expected Hellinger distance of two traders randomly drawn

from the population. At any given time t a trader with beliefs φk has an expected disagreement

with another randomly chosen trader from the population of δkt =
∑
j∈φ xj,tδ(φk, φj). Therefore,

any two random traders, will have an expected disagreement given by

δt =
∑
k∈φ

xk,tδ
k
t =

∑
k∈φ

∑
j∈φ

xk,txj,tδ(φk, φj) (7)

I now perform a Monte Carlo exercise similar to the ones detailed above, but this time I fit the

following functional form to the process

pt+1 − pt = α1(pt − pt−1) + α2δt + α3(pt − pt−1)× δt + εt (8)

where the main interest is relative to α3 which must be positive if the model conforms to the

empirical data. Table 4 shows that the disagreement metric increases monotonically as the

Number
of Beliefs

δ̄ ᾱ1 ᾱ2 ᾱ3

5 0.3347 -0.2177 0.0022 2.1994
6 0.3543 -0.3103 0.0009 2.3971
7 0.3692 -0.3987 -0.0040 2.5167
8 0.3798 -0.4290 0.0006 2.5725
9 0.3884 -0.4717 0.0011 2.6606
10 0.3943 -0.5134 0.0029 2.7083
11 0.3997 -0.5163 -0.0000 2.6801
12 0.4039 -0.5248 -0.0012 2.6533
13 0.4077 -0.5225 0.0026 2.6786
14 0.4114 -0.5382 0.0018 2.6554
15 0.4138 -0.5441 0.0018 2.6527

Table 4: Dependence of drift on cardinality of the set φ. Each row reports the average over 10,000
Monte Carlo replications of the initial measure of disagreement (δ1) and of the coefficients of (8).

cardinality of the set of beliefs increases. Furthermore according to this table, the interaction

term between past price movements and disagreement is positive and it increases monotonically
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up to 10 different beliefs, at which point it reaches a plateau. The variation in the average of

α3 past this point is consistent with the uncertainty inherently associated with the Monte Carlo

nature of these calculations. These results indicate that this parameterization is consistent with the

empirical results of Verardo (2010). Furthermore they suggest a new empirically testable hypothesis:

increasing the amount of disagreement at “moderate” levels should be expected to yield price drift

that is more persistent, while similar increase should not produce the same effects if disagreement

is already high in the market.

6.4 More Persistent Dynamics

Analytical tractability has so far imposed the assumption that the traders use only the most recent

price of the risky asset to evaluate beliefs. A more realistic assumption regarding this aspect of the

model would be to impose that traders have a finite history of past prices available and that they

evaluate the joint likelihood of their sample. Table 5 shows that increasing the sample size used by

the traders does not alter significantly the picture painted so far.

No Shocks Supply Shocks Populations Shocks
Sample
size

ᾱ1 α1 > 0 ᾱ1 α1 > 0 ᾱ1 α1 > 0

3 0.4772 0.8477 0.5878 0.7747 0.4464 0.6602
5 0.4545 0.8482 0.5728 0.7676 0.4530 0.6614
7 0.4690 0.8536 0.5864 0.7783 0.4503 0.6647

Table 5: Effects of larger samples on drift. The supply and Population shocks columns refer to
Monte Carlo experiments with normal shocks with a standard deviation of 0.01.

6.5 Investing With Drift

The portfolio decisions of the traders take drift into account only indirectly, through the likelihood-

based belief selection process. However, it is natural to question if a trader that puts more weight

on ex-ante drift could earn higher returns, on average. To explore, this issue I implement a series

of Monte Carlo experiments in which I track the profits of a randomly selected trader under

two alternative heuristic modifications of the optimal portfolio implied by (1).10 Under the first

10The parameterization is the same as in the previous subsections.
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modification a trader uses equation (1) to calculate their demand for the risky asset, but they

substitute µk with µ̃k = µk + pt−1 − pt−2. The second modification instead has the trader replace

µk with µ̃k and also σ2
k with σ̃2

k = σ2
k+(pt−1−pt−2)2. The experiment is repeated 10,000 times and

the average capital gain for the trader using the optimal portfolio allocation is zero by definition.

However the two modified portfolio allocation rules yield average capital losses of −0.27% and

−0.22% on average.11

7 Conclusions

This paper proposes a model of asset pricing that reconciles the differences-of-opinion paradigm with

the rational-expectations hypothesis. Models with differences of opinions do not consider learning

but this paper shows that filling this gap is desirable. First, in a model with learning, traders

can use efficiently all the information they possess and it is no longer necessary to assume that

traders simply discard any information beyond their own private “signals.” Second, the learning

dynamics are consistent with many well-documented empirical facts about asset prices. Models

without learning sacrifice either of these desiderata.

The main empirical motivation and focus of this paper is price drift, a deeply puzzling regularity

in a representative-agent rational-expectations world. The mechanism that this paper proposes to

explain is based on the relaxation of the assumption of a representative agent: price drift has the

elements of a self-fulfilling prophecy in the model of this paper. Competition for accurate forecasts

makes the traders adopt beliefs that better explain the price data, and at the same time, prices are

the reflection of this selection mechanism and naturally tend to confirm the most popular beliefs,

as a result of the trading activity.

The numerical explorations of Section 6 also suggest some new hypotheses that may be tested

empirically. First, Table 1 suggests that the prevalence of drift is diminished by randomness in

the population dynamics. Under the interpretation that a small number of traders active on a

market is the cause of such randomness, the model suggests that drift should be more pervasive

for heavily traded assets than for thinner ones. Second, Table 3 suggests that disturbances to the

supply of assets should interact with the degree of risk aversion of the typical investor and acting

towards reducing the prevalence and magnitude of drift. Finally, according to Table 4 it appears

11This result is robust to the presence of small supply and population shocks. However, larger shocks produce
more unpredictable results, since the presence of drift is weakened by these shocks, as shown in Table 1.
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that the effect of beliefs heterogeneity on price drift is nonlinear and that only at moderate levels

of disagreement, an increase in belief heterogeneity is associated with increases in drift.
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Appendices

Derivation of the Population Dynamics

Fix φk ∈ φ and consider the change in the share of traders adopting beliefs φk between time

t and t + 1. This change is given by the flow of traders that adopt φk minus the traders that

abandon φk for some other belief. The probability that a trader with beliefs φi ∈ φ adopts φk is

ρt,i→k = xt,kΦ
(
φk(pt)
φi(pt)

)
so that

xt+1,k − xt,k =

K∑
i=1

xt,iρt,i→k −
K∑
i=1

xt,kρt,k→i
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xt+1,k −��xt,k =

K∑
i=1

xt,ixt,kΦ

(
φk(pt)

φi(pt)

)
−��xt,k

K∑
i=1

ρt,k→i︸ ︷︷ ︸
1

Exploiting the linearity of Φ yields

xt+1,k = xt,kφk(pt)

K∑
i=1

xt,iΦ

(
1

φi(pt)

)
(A1)

Changing the index k to j and summing over it yields

1 =

K∑
j=1

xt+1,j =

K∑
j=1

xt,jφj(pt)

K∑
i=1

xt,iΦ

(
1

φi(pt)

)
(A2)

Dividing (A1) by (A2) yields the population dynamics (4):

xt+1,k =
xt,kφk(pt)

���������∑K
i=1 xt,iΦ

(
1

φi(pt)

)
∑K
j=1 xt,jφj(pt)

���������∑K
i=1 xt,iΦ

(
1

φi(pt)

) .
Population Dynamics With More Persistence

Suppose that the traders use a series of the past T prices to evaluate beliefs. The probability of

the sample assigned by beliefs φi ∈ φ is φi(pt−T+1)× · · · × φi(pt) and therefore a trader with these

beliefs will adopt φk instead if and only if

ζφk(pt−T+1)× · · · × φk(pt) ≥ φi(pt−T+1)× · · · × φi(pt)

where ζ is a trader-specific idiosyncrasy with uniform cumulative distribution Φ having a positive

support centered on one. By defining

φ̃i({pt−τ}T−1τ=0 ) = φi(pt−T+1)× · · · × φi(pt)

and using an identical derivation as before yields

xt+1,k =
xt,kφ̃k({pt−τ}T−1τ=0 )∑
j xt,j φ̃j({pt−τ}

T−1
τ=0 )

.
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