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1 Introduction

A traditional view of the U.S. business cycle is that of alternating phases of expansion

and recession, where expansions correspond to widespread, persistent growth in economic

activity, and recessions consist of widespread, relatively rapid, decline in economic activity.

Timely identification of the turning points between these phases, referred to as peaks and

troughs, is of considerable importance to policymakers, financial markets, firms, and indi-

viduals. A substantial literature has focused on the prediction of future turning points using

a variety of leading economic and financial time series, with some limited success.1 In these

studies, the problem is to use data measured for month t and earlier to predict whether

month t + h will be a peak or a trough. A smaller literature has focused on the h = 0

horizon, so that some coincident data is used to predict turning points. Such predictions are

referred to as “nowcasts”.2

The problem of nowcasting business cycle turning points is of considerable interest be-

cause turning points are often not identified until many months after they occur. The

official chronology of business cycle turning points in the United States is provided by the

National Bureau of Economic Research’s (NBER) Business Cycle Dating Committee, which

has historically announced new turning points with a lag of between 5-19 months. Statistical

models improve on the NBER’s timeliness considerably, with little difference in the timing of

the turning point dates established.3 However, these models still generally identify turning

points only after several months have passed. As a recent example of this, Hamilton (2011)

surveys a wide range of statistical models that were in place to nowcast business cycle turning

points, and finds that such models did not send a definitive signal regarding the December

2007 NBER peak until late 2008.4 One important reason for these identification lags are data

1For a recent summary of this literature, see Katayama (2008).
2The prefix “now” refers to the use of data measured for month t to evaluate whether month t is a recession
or expansion month. Note that because of data reporting lags, a nowcaster will usually be doing her analysis
regarding month t in a month subsequent to month t.

3See, e.g., Chauvet and Piger (2008) and Chauvet and Hamilton (2006).
4The NBER didn’t announce the December 2007 peak until December 1, 2008.
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reporting lags, as many key coincident indicators are only released after a 1-2 month lag.

Another factor is the need for negative or positive data to accumulate over several months

before a definitive turning point signal is uncovered.

The essence of real-time turning point identification is a problem of classification. Given

a set of observations on economic indicators, we wish to determine which of two “classes”

these observations came from, where the classes are expansion and recession. Much of the

literature interested in nowcasting business cycle turning points has focused on parametric

statistical models to link the observed data to the classes. For example, Chauvet (1998)

proposes a dynamic factor model with Markov-switching (DFMS) to identify expansion and

recession phases from a group of coincident indicators, and Chauvet and Hamilton (2006)

and Chauvet and Piger (2008) evaluate the performance of variants of this DFMS model to

identify NBER turning points in real time. Fossati (2012) alternatively evaluates the real-

time nowcasting performance of a dynamic probit specification linking NBER expansion and

recession phase indicators to observed data. If the nowcaster knows the true data generating

process (DGP) linking the observed data to the classes, then such parametric models allow

for the construction of an optimal Bayesian classifier of a month’s data as belonging to either

the expansion or recession class.

However, in the absence of knowledge of the true DGP, non-parametric methods may

be more robust, as they do not rely on a specification of the DGP. Of particular interest

are non-parametric classification algorithms based on artificial neural networks, which have

been successfully utilized for real-time classification in a large number of existing studies

outside of economics. Somewhat surprisingly however, application of these algorithms to the

problem of real-time classification of macroeconomic data to expansion or recession phases,

and the resulting identification of business cycle turning points, are rare. The only study

we are aware of in this regard is Qi (2001), who considers the ability of an artificial neural

network to produce out-of-sample forecasts of U.S. business cycle turning points from 1972

to 1995. However, this study does not consider nowcasts, nor does it incorporate real-time,
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unrevised, data when forming out-of-sample predictions.5

In this paper, we use a non-parametric classification algorithm known as Learning Vector

Quantization (LVQ) to classify economic indicators as arising from either expansion or reces-

sion regimes in real time.6 LVQ is defined as a special case of an artificial neural network, and

is a simple and flexible approach to project a high dimensional number of potentially nonlin-

ear relationships onto a lower dimensional array. It is widely used in real-time classification

problems in a number of fields and applications, including production quality monitoring,

power load forecasting, speech recognition, odor classification, intrusion detection, beer grad-

ing, and email spam detection. LVQ takes both historical data and its classification as an

input, which is then used to train the algorithm. For this historical classification we use

the available NBER chronology. Based on this training, new data that has not yet been

classified by the NBER is then labeled as arising from the expansion or recession regime,

which provides real-time tracking of new business cycle turning points. Our focus is on the

ability of the algorithm to produce timely and accurate identification of new NBER business

cycle turning points.

In addition to the potential advantages of a non-parametric approach when the DGP

is unknown, LVQ has computational advantages over parametric methods that have been

frequently used to nowcast business cycles based on a group of coincident indicators. First,

the algorithm is very simple to implement, generally only taking seconds of computer time.

5A substantial number of studies have used non-parametric algorithms to establish historical, in-sample,
chronologies of business cycle turning points. For example, Harding and Pagan (2006) develop a non-
parametric algorithm to identify peaks and troughs in individual economic time series, and then aggregate
these into a single turning point chronology. They show that this algorithm applied to U.S. data can
reasonably replicate the historical chronology provided by the NBER. Stock and Watson (2012) derive non-
parametric estimators of turning points and associated sampling distributions. They apply their approach
to a large cross section of monthly U.S. data to establish turning point dates over the 1959-2010 period.
Vishwakarma (1994) uses an algorithm based on an artificial neural network to produce a historical classifi-
cation of U.S. data into expansion and recession regimes over the period from 1965 to 1989. More recently,
Fushing et al. (2010) use the Hierarchical Factor Segmentation algorithm proposed in Fushing et al. (2006),
to produce a historical chronology of business cycle dates in both the United States and 22 other OECD
countries. The objective of our study differs from these in that we take the historical NBER chronology as
given, and focus on identifying turning points in end-of-sample data that has not yet been classified by the
NBER.

6LVQ algorithms and related extensions are described in detail in Kohonen (2001).
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By contrast, estimation of the parameters of the DFMS model or a dynamic probit specifi-

cation is generally achieved via computationally intensive Bayesian techniques. Frequentist

approaches to estimation can also be used, but these require approximations as the exact

likelihood function is generally not available for these models. Also, the LVQ algorithm can

be easily modified to incorporate data series that arrive with different reporting lags, as well

as data series of mixed reporting frequency (e.g. monthly vs. quarterly), both of which

are real-world features of the nowcasting environment. Finally, the LVQ algorithm can be

implemented when there is a large number of indicators with little increase in computational

complexity.

A summary of our empirical analysis is as follows. We first conduct a Monte Carlo study

of the potential benefits of using the LVQ algorithm over a misspecified parametric statistical

model. This analysis suggests these benefits are potentially large, in that classification accu-

racy can be significantly improved, particularly in the less frequently occurring classes. We

then turn to evaluating the LVQ algorithm’s ability to classify U.S. macroeconomic data into

expansion and recession phases in real time, with particular emphasis on the timely identi-

fication of business cycle turning points. As the data to be classified, we use four monthly

coincident series highlighted by the NBER as providing information regarding business cycle

phases, and we consider an analyst using the LVQ algorithm in each month from December

1976 to August 2013 to identify new business cycle turning points. Importantly, we use a

real-time vintage data set for this evaluation, which accurately reflects the information that

would have been available to the analyst in real time. Also, as the economic indicators we

consider are released with different reporting lags, we consider nowcasts produced at different

points during the month, allowing us to investigate the importance of different pieces of the

monthly data flow for assessing business cycle conditions. This updating of inferences about

the business cycle regime is simple to implement because of the ease with which unbalanced

panels are incorporated into the LVQ algorithm.

The rest of the paper proceeds as follows. Section 2 provides a general description of
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the LVQ algorithm. Section 3 reports evidence from a Monte Carlo simulation designed

to compare the real-time classification performance of the LVQ algorithm to a Bayesian

classifier. Section 4 describes the performance of the model in identifying new business cycle

turning points. Section 5 concludes.

2 Classification Using Learning Vector Quantization

2.1 Data Classification

The issue of automatic data classification has long been studied in statistics, where the

traditional approach is based on the calculation of conditional probabilities. Consider the

problem of assigning an m-dimensional real vector x ∈ Rm to a class belonging to the set

{Ck}Kk=1. Let p(Ck) denote the a priori probability that a vector belongs to class k and

let p(x|x ∈ Ck) be the probability that sample x is observed if it belongs to class Ck. The

statistical approach to classification uses the discriminant functions

δk = p(x|x ∈ Ck)p(Ck)

where pattern x is assigned to class Ck where Ck = maxk{δk}. This approach has several

theoretical advantages including the property that the probability of misclassification is

minimized. From a practical point of view though, the desirable theoretical properties of this

classification rule may not be exploitable because of a lack of knowledge of the probabilities

that govern the DGP. The usual approach taken in practical statistical pattern classification

consists of deriving a good estimate of the discriminant functions over the entire relevant

domain of x (or a subset of it that depends on the particular context).

To make things more concrete, consider the data illustrated in panel (a) of Figure 1

which shows two random samples of equal size drawn from two independent bivariate normal

distributions. In terms of the notation used above we have that x ∈ R2, the set of classes
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is {C1, C2}, the a priori probability of each class is 1
2
, and the conditional probabilities are

calculated as follows

p(x|x ∈ Ck) =
1

2π|Σk|1/2
exp
(
−1

2
(x− µk)′Σ−1

k (x− µk)
)
, k = 1, 2, (1)

where µk and Σk denote respectively the mean and variance-covariance matrix of the two

bivariate normal distributions. As is clear from Figure 1, this simple classification problem

is non-trivial since the two classes have overlapping areas. To classify the samples we define

a separation manifold between the two classes determined by the discriminant functions.

The separating manifold partitions Rm into subsets over which each discriminant function

is maximal. Panel (b) of Figure 1 shows the separating manifold for these data. Once the

boundary between the two regions has been established, it is immediate to build a Bayesian

classification system that assigns class 1 to new data points that lie below the curve and

class 2 to those points lying above it. Notice that the optimality of this classifier system

does not imply perfection in its classification ability, but rather only that the probability of

an erroneous classification is minimized.

Vector Quantization (VQ) is an alternative strategy used to obtain a separating manifold

in the space of interest, but it is based on a completely different principle than the Bayesian

classifier. A VQ classifier is based on the definition of certain key points – called codebook

vectors – in the data space. Once these relevant points are singled out, data is classified

to belong to the same class as the closest codebook vector in the Euclidean metric.7 A key

difference between a Bayesian and a VQ classifier is that while the Bayesian strategy seeks

to approximate the discriminant functions over the whole space used to represent the data,

the VQ classifier may focus on a small region of this space, if this is where most of the action

takes place.

Consider, for example, the situation depicted in Panel (a) of Figure 2: two codebook

7The Euclidean metric is one of the many possible metrics that one could use. See Kohonen (2001) for more
details.
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vectors representing two different classes are plotted respectively with a diamond and a

crossed square.8 New data of unknown classification, then, is classified simply by means of

a “nearest neighbor” strategy. For example a hypothetical vector x would be classified to

belong to class 1, while vector y would be assigned to class 2. In short, a VQ classifier is

based on quantizing (i.e. approximating) all the salient features of the data into the codebook

vectors, which can be thought of as the most representative points of each class. Just like

in the Bayesian classifier, the codebook vectors define a separating manifold in the space

Rm through the midplanes between neighboring pairs of vectors. For the data represented

in Figure 1, the codebook vectors may be placed as in panel (b) of Figure 2, where the

midplanes between neighboring pairs of vectors would approximate the optimal Bayesian

separation curve.

The identification of good codebook vectors may seem difficult without prior knowledge

of (or assumptions about) the statistical distributions involved. The algorithms described

in the next section solve this problem in a surprisingly simple and computationally light

manner.

2.2 LVQ Algorithms

Learning Vector Quantization is an adaptive learning algorithm in which the locations

of the codebook vectors are established through adjustments of decreasing magnitude. We

will consider two variants of the same basic strategy, called LVQ1 and LVQ2. Let X be a

collection of N observations xn ∈ Rm, n = 1, . . . , N for which the classification in the set

{Ck}Kk=1 is known. Let there be N̄ ∈ [K,N ] codebook vectors mi ∈ Rm, i = 1, . . . , N̄ with

given initial locations. A strategy for establishing the initial locations is discussed in Section

2.4. Finally, let g = 1, 2, . . . , G denote iterations of the algorithm and let αg be a decreasing

sequence of real numbers bounded between zero and one. Given the initial location of the

N̄ codebook vectors, the LVQ1 algorithm makes adjustments to their location through these

8The definition of a codebook vector includes the location in the relevant space and the class that codebook
vector belongs to, which can be read in the legend.
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steps:

Algorithm 1 (LVQ1)

1. Let g = 1 and n = 1.

2. Identify the codebook vector mg
c closest to the data point xn

c = argmin
i∈{1,...,N̄}

{||xn −mg
i ||} .

3. Adjust the location of the codebook vector with index c according to the following rule:


mg+1

c = mg
c + αg[xn −mg

c ] if xn and mg
c belong to the same class

mg+1
c = mg

c − αg[xn −mg
c ] otherwise

4. If n+ 1 ≤ N let n = n+ 1 and repeat from step 2. Otherwise let n = 1 and g = g + 1

and if g ≤ G repeat from step 2; stop otherwise.

The LVQ1 algorithm is very simple. At each iteration a data point is selected, and

its nearest codebook vector is identified. If this codebook vector agrees with the actual

classification of the data point, its location is moved closer to the data point. If the selected

codebook vector does not classify the data point correctly, then it is moved farther from the

data point. Figure 3 shows a hypothetical example of these two cases. These calculations

are repeated for each point in the data set. When the data has all been used, the weight αg,

which controls the size of the adjustment to the codebook vectors, is decreased and a new

iteration is started. It is possible to show that this algorithm converges to an approximation

of the Bayesian classifier described above, where the precision of the approximation depends

on the number of codebook vectors used – see Kohonen (2001) for additional details.

The LVQ2 algorithm represents a variant to LVQ1 that has better classification ability

for certain applications. The only difference between LVQ1 and LVQ2 is that while LVQ1
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updates one codebook vector at a time, LVQ2 updates two codebook vectors. More specif-

ically, for each data point and at each iteration, one needs to identify the two codebook

vectors closest to the data point, such that one classifies this data correctly while the other

does not. In terms of the example illustrated in panel (a) of Figure 3, assuming x belongs to

the same class as the codebook vector mi, the two vectors identified by LVQ2 would be mc

(which correctly classifies x) and mj. The updating takes place similarly, by moving “closer

to the data” the codebook vector that classifies the data correctly, and moving “farther from

the data” the codebook vector that does not classify it correctly.

2.3 Class Prediction

The LVQ algorithms described in the previous section require a sample of data xn ∈

Rm, n = 1, . . . , N for which the classification in the set {Ck}Kk=1 is known. This sample

of data is used to produce codebook vectors via the LVQ algorithms, a process typically

referred to as “training” the classifier. Once this training is complete, and the codebook

vectors established, the classifier can be used to predict the class of new observations for

which the true class is not yet known. This process is analogous to the in-sample parameter

estimation and out-of-sample prediction steps employed with parametric statistical models.

The specifics of class prediction is as follows. Suppose we have a new data point, xN+1,

for which the classification is unknown. We can use the LVQ classifier to predict the class

for this data point by first finding the codebook vector mc that is closest to xN+1 in the

Euclidean metric:

c = argmin
i∈{1,...,N̄}

{||xN+1 −mi||} ,

and then assigning xN+1 to the same class as is assigned to codebook vector mc.

In some applications, the new data point to be classified may be only partially observed.

This is particularly true for our application to nowcasting business cycle turning points, since

relevant data is released at different times and with varying reporting lags. In such cases,
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class prediction is achieved simply by finding the codebook vector mc that is closest to xN+1

in the Euclidean metric for the elements of xN+1 that are observed.

2.4 Initialization of Codebook Vectors Using Self-Organizing Maps

We require N̄ codebook vectors to initialize the LVQ algorithms. This initialization could

affect the final placement of codebook vectors, and is thus not innocuous. In this section

we describe a data-based strategy for the initialization of codebook vectors based on an

algorithm known as a self-organizing map (SOM). A SOM is a tool to represent data of

dimensionality m > 2 on a two dimensional grid of nodes, in a topology-preserving manner.9

Each node of the SOM is linked to a key point in the m-dimensional space of interest and

it is used to represent all the data points that are closest to this key point in the relevant

metric. As an example, suppose we have three points x, y, z ∈ Rm such that x and y are

closer than x and z. Suppose also that point x and y are represented by the nodes A and B

respectively in Figure 4. A SOM then will map point z to a node that is not closer to A than

node B (for example node C would do.) The similarity between the codebook vectors used

in VQ and the key point linked to each node of a SOM is evident. Precisely this similarity

allows us to initialize the LVQ algorithms by first constructing a SOM representing the data,

and then initializing the codebook vectors at the key points identified by the SOM. A concise

description of the SOM algorithm follows.

Let X be a collection of N observations xn ∈ Rm, n = 1, . . . , N , and let N̄ < N denote

the number of desired nodes in the map. Each node represents a point mi ∈ Rm. Let

s = 1, 2, . . . , S denote iterations of the algorithm, and ms
i ∈ Rm is the point attached to

node i at iteration s. A SOM representation of the data is then obtained through the

application of the following algorithm.

9The relevant topology is the one that is generated by the relevant notion of distance used by a particular
application. Throughout the paper we always use the Euclidean metric.
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Algorithm 2 (SOM)

1. Set s = 1, n = 1. Initialize the points assigned to each node by randomly drawing m1
i ,

i = 1, · · ·, N̄ , from X.

2. Identify the map’s node c that represents the data sample xn, i.e.

c = argmin
i∈{1,...,N̄}

{||xn −ms
i ||}

3. Adjust the points attached to each of the nodes using the following formula

ms+1
i = ms

i + hs(c, i)[xn −ms
i ], i = 1, . . . , N̄ ,

where {hs(c, i)}Ss=1 is a sequence of positive “neighborhood functions,” defined over the

map’s nodes and satisfying the following conditions: (1) hs(c, i) → 0 as s → ∞; (2)

hs(c, i) is non-increasing in the distance between nodes c and i.

4. If n+ 1 ≤ N let n = n+ 1 and repeat from step 2. Otherwise let n = 1 and s = s+ 1

and if s ≤ S repeat from step 2; stop otherwise.

Although the LVQ and SOM algorithms appear very similar, there is a fundamental

difference between them.10 Unlike the LVQ algorithm, SOMs do not use any information on

the classification of the data (hence the adjective “self-organizing”). Consequently, a SOM

does not attach a class to its key points in Rm. However, the LVQ algorithms requires that

a class be attached to the initial codebook vectors. Thus, before the SOM key points can be

used to initialize the codebook vectors for the LVQ algorithms, we must assign classes to the

nodes of the SOM. There are at least two approaches to achieve this. First one might map

the data on the SOM and then assign to each node the same classification as the majority

10This similarity originates from a common source of inspiration. The adaptive adjustment strategy used
by these algorithms is originally inspired by the biology of the human brain, and both are examples of
artificial neural networks. See Kohonen (2001) for details.
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of the data points it represents. Alternatively one can first split the data according to the

classification information, and then run the SOM algorithm separately for each class. We

follow this second strategy in the empirical analysis that follows.

A SOM representation of the data is not unique. Specifically, depending on the random

location of the initial points in Step 1 of the SOM algorithm, one may obtain different maps

representing the same data. As it turns out, some iterations of Algorithm 2 lead to more

useful maps than others, and this poses the problem of automatically selecting “good” maps.

We deal with this issue in two ways. First, it is intuitively obvious that a SOM that maps the

available data to only a small set of the available nodes is inefficient, as many nodes of such a

map are unused. Maps that suffer from such inefficiency tend to be characterized by a “large”

average distance of the key points in Rm that each node represents. For this reason, a widely

accepted rule-of-thumb for the design of good SOMs consists of ensuring that the distance

between any two key points in Rm is smaller than half the standard deviation of the data.

We employ this heuristic in the empirical analysis below. Second, for the analysis of real-

time nowcasting of business cycle turning points, we base our empirical results on multiple

runs of the LVQ algorithm with SOM initialization, where the SOM algorithm is initialized

with different random vectors for each run. We then choose a single class prediction based

on the prevalence of the class predictions across these multiple runs. Additional details are

provided in Section 4.2 below.

2.5 Implementation of LVQ with SOM Initialization

In the above algorithms, there are several settings that must be chosen for implementa-

tion. These include the number of nodes used in the SOM, N̄ , which in turn determines the

number of codebook vectors in the LVQ, the specification of the neighborhood function in

the SOM, hs (c, i), the form of the weight function, αg, the number of algorithm iterations, G

and S, and the choice of LVQ1 or LVQ2. In our implementation, we focus our analysis on the

LVQ1 algorithm. We then calibrate the other settings according to the recommendations
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given in Kohonen (2001). Specifically, we use the R package “kohonen,” with associated

commands “olvq1”, “lvq1” and “som” to implement the LVQ1 and SOM algorithms. For

additional details, see Kohonen (2001).

3 Monte-Carlo Analysis of Robustness

Because the LVQ classifier requires no assumption about the probability distributions

of the classes of interest, it is robust to misspecification of these distributions. This is a

potentially important advantage over the Bayesian classifier, the performance of which is

dependent on the validity of the assumed model specification. The possibility of misspecifi-

cation is especially salient for nowcasting and forecasting macroeconomic conditions, where

structural changes in the economic environment create an important source of model mis-

specification.11

Because the relative performance of the two classifiers depends on many factors – includ-

ing the nature of any misspecification for the Bayesian classifier, as well as the correlation

structure between the data points generated by the two different classes – it is not possible to

say whether LVQ will outperform a misspecified Bayesian classifier under general conditions.

In this section, we instead use Monte Carlo simulations to document the relative performance

of the two classifiers for the specific task of determining whether simulated macroeconomic

data comes from an expansion or recession phase. We perform experiments both where the

Bayesian classifier is based on a correctly specified model, and is thus optimal, and where

the Bayesian classifier is based on a misspecified model.

11Timmermann (2006) discusses the importance of structural breaks in generating forecast failures in macroe-
conomic forecasting models. In the specific context of dating business cycles, Kim and Nelson (1999) show
that the autoregressive Markov-switching model of Hamilton (1989) must be modified to account for struc-
tural breaks before it is able to accurately identify U.S. recession and expansion phases after 1984.
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3.1 Data Generating Processes for Simulated Data

In the Monte Carlo experiments we consider the case of four time series random variables,

whose time t values are collected in the vector xt, t = 1, . . . , T . We assume that xt is

generated from one of two classes, labeled expansion and recession. The class in operation

at time t is indexed by St, where St = 0 denotes expansion and St = 1 denotes recession. We

consider two alternative DGPs for the expansion and recession classes. For the first, labeled

DGP1, xt is i.i.d. Gaussian in both classes, and the classes evolve independently across time:

DGP1:

xt| (St = 0) ∼ i.i.d. N (µ0,Σ0)

xt| (St = 1) ∼ i.i.d. N (µ1,Σ1)

St ∼ Bernoulli (p) .

For the second, labeled DGP2, xt has an i.i.d. multivariate t distribution within classes:

DGP2:

xt| (St = 0) ∼ i.i.d. t (µ0,Σ0, v)

xt| (St = 1) ∼ i.i.d. t (µ1,Σ1, v)

St ∼ Bernoulli (p) .

We calibrate these DGPs to four monthly coincident series that are highlighted by the

NBER in their decisions about the timing of U.S. business cycle turning points. These are:

1) growth in non-farm payroll employment (E), 2) growth in the industrial production index

(I), 3) growth in real personal income excluding transfer receipts (P ), and 4) growth in

real manufacturing and trade sales (M). We collect monthly data on these four time series

from February 1967 to July 2013, and use the NBER’s recession chronology over this sample
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period to define expansion and recession months. We set (µ0,Σ0) and (µ1,Σ1) to the sample

mean and contemporaneous sample variance-covariance matrix of these series during NBER

expansion and recession phases respectively. The parameter p is set to the proportion of

recession months in the sample, and the degree of freedom parameter in DGP2 (v) is set to

3.

3.2 Classification

For each of the DGPs discussed above, we apply two classifiers, a Bayesian classifier and

the LVQ1 classifier with SOM initialization. In evaluating the discriminant function for the

Bayesian classifier, we assume that DGP1 generated the data in all cases. Thus, for those

simulations where DGP2 is the true DGP, the Bayesian classifier is misspecified.

For each Monte Carlo experiment, we generate 10,000 samples of xt of size T = 200 from

one of the DGPs given above. For each of these samples, the first T1 = 100 data points are

used to estimate the parameters required to apply the Bayesian classifier, and as a training

sample to obtain codebook vectors for the LVQ algorithm.12 Over these 100 periods the

class indicator St is taken as known. The class of the second T2 = 100 data points is then

predicted by the two classifiers.

We report the performance of the Bayesian and LVQ classifier in the Monte Carlo simula-

tions using the confusion matrix, which gives the rates of correct and incorrect classification

of each class. We also report the Matthews Correlation Coefficient (MCC) as a summary

measure of classifier performance, defined as:

MCC:
(TP × TN)− (FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
.

where TP and TN are the number of correct classifications of St = 1 and St = 0 respectively,

12As the assumed DGP for the Bayeisan classifier is DGP1, it requires an estimate of µi and Σi, i = 0, 1.
These are taken as the sample mean and variance of the observations from each class.
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and FP and FN are the number of incorrect classifications of St = 1 and St = 0. The

MCC ranges between -1 and 1, with 1 indicating perfect classification ability and 0 indi-

cating classification ability no better than random classification.13 It is preferred to other

summary measures, such as the proportion of correct classifications, when one class occurs

more frequently than the other.

3.3 Results

Table 1 gives the results of the Monte Carlo experiment where DGP1 generates the data.

Again, in this baseline case, the Bayesian classifier is based on a correctly specified DGP, and

is the optimal classifier. As the confusion matrix shows, in this case the Bayesian classifier

correctly classifies 96.7% and 56.8% of expansion and recession months respectively. The

LVQ classifier does worse than the Bayesian classifier for classifying expansions (86.2%) but

is better at classifying recessions (66.7%). Overall, the MCC prefers the Bayesian classifier.

Table 2 shows the results of the Monte Carlo experiment when DGP2 generates the data.

Again, in this case the Bayesian classifier is misspecified in that it assumes a Gaussian dis-

tribution inside of each class, when the true distribution is multivariate t with three degrees

of freedom. These results show that the deterioration of the Bayesian classifier is substan-

tial for this form of misspecification. In particular, the Bayesian classifier does far worse at

classifying recessions under DGP2, with the rate of correct classification falling substantially

to only 35.9%. In contrast, the LVQ classifier appears much more robust to the change in

the data generating process, with its rate of correct classification in recessions falling only a

few percentage points, and remaining above 60%. The relative deterioration of the Bayesian

classifier is reflected in the MCC, which now ranks the two classifiers as essentially equal.

Thus, the advantage of the Bayesian classifier over LVQ disappears completely due to the

misspecification introduced by moving from DGP1 to DGP2.

13An MCC of -1 indicates complete disagreement between the classifier and the actual classes. Of course,
such a classifier could be inverted to obtain perfect classification.
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4 Real-Time Identification of Turning Points

In this section we evaluate the performance of the LVQ1 classifier with SOM initialization

for real-time identification of new U.S. business cycle turning points over a period from

December 1976 to August 2013, a period over which there have been five complete NBER

recession episodes, and thus five peaks and troughs. We evaluate both the accuracy and

speed with which turning points are identified, with the eventual NBER chronology serving

as the standard for accuracy.

4.1 Data to be Classified

The data series we use as inputs to the algorithm are the same monthly series as those

used to calibrate the Monte Carlo experiments above, namely: 1) growth in non-farm payroll

employment (E), 2) growth in the industrial production index (I), 3) growth in real personal

income less transfer receipts (P ), and 4) growth in real manufacturing and trade sales (M).

Again, these series are the four monthly series highlighted by the NBER in their decisions

regarding U.S. business cycle classification. Also, they are the focus of the existing literature

interested in nowcasting U.S. business cycle turning points.14. The LVQ algorithm can easily

be extended to consider a larger number of indicators, with little increase in computational

complexity. However, to maintain comparability with studies using alternative approaches

to identify turning points, we restrict our attention to these four series.

We consider an analyst applying the LVQ algorithm in real time each month from Decem-

ber 1976 to August 2013. To accurately replicate the data that would have been available

to this analyst, we use a dataset containing each release, or vintage, of these four coincident

variables over each month in our evaluation period. Specifically, we collect a time series

for each variable as it would have appeared as of its monthly release, beginning with data

released in December 1976, and ending with data released in August 2013. For each vintage,

the sample collected begins in January 1959 and ends with the most recent data available

14See, e.g., Chauvet and Piger (2008), Camacho et al. (2012), and Fossati (2012)
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for that vintage. To collect this vintage dataset, we begin with the dataset used in Chauvet

and Piger (2008), which was collected partly from the Federal Reserve Bank of Philadelphia

real-time data archive described in Croushore and Stark (2001), and partly from past re-

leases of government statistical agencies. This dataset was then extended to include data for

the recent “Great Recession” and beyond using data releases from the Bureau of Economic

Analysis and the Federal Reserve Bank of St. Louis ALFRED database.

NBER recession and expansion phases are persistent, with the estimated probability over

the 1967-2013 sample of remaining in an expansion equal to 0.98, and the corresponding prob-

ability for recessions equal to 0.9. To incorporate the information this persistence provides

into the classification problem, we classify a vector of data that contains both current and

one lag of the monthly series mentioned above. The vector to be classified is then:

xt = (Et, It, Pt,Mt, Et−1, It−1, Pt−1,Mt−1)′ ,

4.2 Real-Time Classification Environment

The real-time classification environment is as follows. We assume an analyst applies the

LVQ algorithm at three dates in each month to a sample of data that would have been

available as of that date. The analyst is attempting to assess whether a new business cycle

turning point has occurred in the recent past, and is doing so during month T + 1. The

analyst first forms her inferences immediately following the release of the employment series

for month T , which occurs on the first Friday of month T + 1. At this point, the analyst

would have E available for month T , I and P available for month T −1, and M available for

month T − 2. We refer to this as a beginning of month (BOM) nowcast. We next consider

the analyst forming inferences immediately following the release of the industrial production

series for month T , which occurs near the middle of month T+1. We refer to this as a middle

of month (MOM) nowcast. Finally, we consider the analyst forming inferences immediately

following the release of the personal income series for month T and the manufacturing and
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trade sales series for month T − 1, which occurs at the end of month T + 1. We refer to

this as an end of month (EOM) nowcast. At each of these points, the analyst would be able

to form an inference about the business cycle phase in operation from the beginning of the

sample period to month T . However, the analyst will have differing amounts of information

available to form this inference.

For each of the BOM, MOM, and EOM timing, the LVQ classifier is trained on a sample

that extends from the beginning of the sample through month T − j, over which the NBER

classification is assumed known. In our analysis, j varies across data vintages, and is set

using the following assumptions: 1) The date of a new peak or trough is assumed to be

known once it is announced by the NBER. 2) A new peak will be announced by the NBER

within twelve months of it occurring, where twelve months is the longest historical lag the

NBER has taken in announcing a new business cycle peak.15 This assumption allows us to

update the knowledge of the NBER phase during long expansions, despite the lack of any

official NBER announcements over these periods. 3) Once the date of a new turning point

is announced by the NBER, the new NBER business cycle phase (expansion or recession)

is assumed to last at least six months.16 After training, the analyst would then attempt to

assess whether a new turning point has occurred over the period from T − j + 1 through

T . That is, over this period the classification is assumed unknown, and the analyst uses the

LVQ classifier to predict the classification.

As an example of the classification environment, suppose an analyst is forming an infer-

ence during December 1980, so that period T is November 1980. At this point, the most

recent NBER announcement was made on June 3, 1980, and was an announcement of a

business cycle peak in January 1980. Since we assume this new recession phase will last a

minimum of six months, the NBER classification is then known through July 1980, with the

period February 1980 through July 1980 classified as recession months. The value of j in this

15The NBER announcement dates of past turning points are available at http://nber.org/cycles/main.html.
16These assumptions regarding lags of knowledge of the NBER classification are meant to be a reasonable

description of reality. However, they are not essential for our results, which are similar for other, more
conservative, assumptions.
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case is then four months, and the analyst would be searching for a new business cycle trough

over the period from August 1980 through November 1980. As a second example, suppose

the analyst was doing her analysis in December of 2005, so that period T is November 2005.

Here, the most recent NBER announcement was made on July 17, 2003, and announced the

November 2001 trough in economic activity. In this case, the value of j would be set to

12 months, with the period December 2001 through November 2004 classified as expansion

months. The analyst would then be searching for a new business cycle peak over the period

from December 2004 to November 2005.

Note that for the BOM, MOM and EOM nowcasts, the most recent data to be classified

will be incomplete. For example, as discussed above, for the BOM nowcast, the end-of-sample

data vector, xT will be as follows:

xT = (Et, Et−1, It−1, Pt−1)′ .

Here, this vector is missing the time T values of I, P and M , and the time T − 1 values of

M . To classify this vector we follow the procedure outlined in Section 2.3, and classify it

according to the closest codebook vector in the dimensions on which xT is not missing.

To determine whether a new turning point has occurred over the prediction period, we

follow Chauvet and Piger (2008) and require three consecutive months classified as a new

business cycle phase prior to calling a new turning point.17 This enforces a prior belief

that business cycle phases are persistent, which is consistent with the NBER definition of

a business cycle phase. Specifically, if the most recent known NBER classification was a

business cycle trough (peak), we identify a new business cycle peak (trough) if the LVQ

classifies three consecutive months over the period from T − j + 1 through T as recession

(expansion) months. Once a new turning point is identified, the date of this new turning

17In conducting the LVQ classification, we again utilize the R package “kohonen.” However, because the
outcome of the classifier has a random element due to the random initialization of the nodes in the SOM,
we base our predicted classification on twenty realizations of the classifier. We then consider a month to be
classified as either an expansion or recession if at least 80% of the classifier runs return this classification.
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point is established as the month prior to the string of consecutive months that is classified

as belonging to the new business cycle phase. For example, suppose the most recent business

cycle turning point identified was a business cycle trough, and months T − 2 through month

T are classified as recession months, but month T − 3 is classified as an expansion month.

In this case, a new business cycle peak would be established as occurring in month T − 3.18

4.3 Results

Table 3 presents the results of the turning point classification experiment, with the top

panel showing results for NBER business cycle peaks and the bottom panel showing results

for NBER business cycle troughs. The first column of the table shows the monthly dates of

NBER turning points, while the remaining columns show the monthly turning point dates

established in real time by the LVQ algorithm applied for the BOM, MOM and EOM timing

respectively. Comparing the NBER dates to the dates established by the LVQ algorithm

then quantifies the accuracy of the dates established by the LVQ algorithm. The number in

parenthesis next to each LVQ turning point date shows the number of days it would have

taken, following the end of the official NBER turning point month, to establish the LVQ

turning point month. This then measures the timeliness of the LVQ algorithm for detecting

NBER turning points. Comparing across the BOM, MOM, and EOM columns provides

information regarding the added value of new data as it arrives over the month. The table

also reports information about the average speed and accuracy of the LVQ algorithm, as well

as providing any instances of turning points established by the LVQ algorithm that didn’t

correspond to NBER turning points.

Beginning with the accuracy of the LVQ algorithm, it is clear from the table that the

LVQ algorithm is very accurate at replicating NBER peak and trough dates. For peaks,

18This decision rule uses the convention that a business cycle trough represents the last month of a recession
and a business cycle peak represents the last month of an expansion. Instead, the NBER represents these
turning points as inflection points that don’t necessarily belong to either expansion or recession phases.
However, previous statistical classification exercises have confirmed that associating peak months with
expansions and trough months with recessions provides the best fit (see e.g. Chauvet and Piger (2008)).
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the average absolute difference of the turning point date established by the LVQ algorithm

and the NBER date is 0.2 for the BOM nowcasts, 0.6 for MOM nowcasts and 0.4 for the

EOM nowcasts. For troughs, the LVQ algorithm is less accurate than for peaks, but still

very accurate, with the dates established by the LVQ algorithm always within one month

of the corresponding NBER dates. Each of the BOM, MOM and EOM nowcasts produce

one “false positive” recession episode which begins in late 1991 and ends in early 1992. This

episode corresponds to the well documented jobless recovery that followed the 1990-1991

NBER recession.

These results suggest that the LVQ algorithm is an accurate technique to establish the

dates of NBER turning points in real time. Having established this, the primary question

of interest is the timeliness with which this accurate identification is achieved. Focusing on

the BOM column, the LVQ algorithm establishes business cycle peaks with an average delay

of 126 days, and business cycle troughs with an average delay of 192 days. This is very

competitive relative to documented alternatives. For example, the NBER business cycle

dating committee has announced peak and trough dates with an average lag time of 224

days for peaks and 446 days for troughs.

Admittedly, the NBER dating committee is not concerned with timeliness, and has in-

stead historically focused on putting a premium on establishing a correct date. Thus, a

more relevant comparison is to alternative statistical approaches used in the literature. To

this end, we compare the results from the LVQ algorithm to other statistical approaches in

use to identify the beginning and end of the recent 2007-2009 recession, as summarized in

Hamilton (2011). To keep the analysis comparable, we focus on alternative approaches that

use the same four coincident series that we use here. The LVQ-BOM procedure would have

established the business cycle peak for the most recent recession on June 6, 2008, which is

157 days following the end of the official NBER peak month, December 2007. By contrast,

Hamilton (2011) reports that other real-time nowcasting models in use at the time did not

identify a business cycle peak until the Fall of 2008 or Winter of 2009. Overall, the timeliness
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of the LVQ algorithm seems promising.

The average lag time for the MOM nowcasts is slightly slower than the BOM nowcasts,

while the EOM nowcasts are in turn slower to identify turning points than the MOM now-

casts. In one sense this pattern is to be expected, as the BOM, MOM, and EOM nowcasts are

formed at increasingly later points in the month. Note however that this is not mechanically

true, as the nowcasts formed later in the month are based on additional information, and

thus may identify a turning point that a nowcast formed earlier in the same month would

miss. Indeed, there are a few specific turning points detailed in Table 2 for which the EOM

nowcast identifies a turning point a few days earlier than the BOM nowcast. However, for

the majority of turning points, the BOM nowcasts are more timely. One might expect that

the tradeoff for the increased timeliness of the BOM nowcasts would be a loss in accuracy,

since by forming nowcasts earlier in the month the analyst uses less data than if they had

waited. However, this does not seem to be the case in practice. The average accuracy of

the BOM nowcasts are equal to or better than the MOM and EOM nowcasts, and there are

no individual turning points where the MOM or EOM nowcast improves on the accuracy

of the BOM turning point date. Also, waiting until later in the month to form nowcasts

does not eliminate the single false positive identified by the LVQ algorithm. This suggests

that the extra data gained by waiting later in month T + 1 to form nowcasts, which is data

on IP and PIX for month T , and data on MTS for month T − 1, does not provide any

noticeable improvement in the performance of the algorithm for establishing business cycle

turning points.

5 Conclusion

Non-parametric algorithms are commonly used in many disciplines to classify data as

belonging to one of a set of classes. We have proposed a particularly salient algorithm,

known as Learning Vector Quantization, for the purposes of classifying economic data into
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expansion and recession regimes. Of particular interest is the ability of the algorithm to

accurately and quickly identify U.S. business cycle turning points in real time.

Using a Monte Carlo simulation, we have demonstrated the potential advantages of the

LVQ algorithm relative to a Bayesian classifier when the latter is based on a misspecified

data generating process for the observed data. We then evaluate the real-time performance

of the LVQ algorithm for identifying business cycle turning points in the United States over

the past 35 years and five recessions. The LVQ algorithm identified the timing of all five

recessions over this period accurately. Also, the speed at which the LVQ algorithm identified

these recessions was promising. For example, the LVQ alorighm would have identified the

December 2007 peak in economic activity by early June 2008, several months ahead of the

statistical tracking procedures reviewed by Hamilton (2011) as being in use at the time.

Our analysis here applied the LVQ algorithm to four monthly coincident series that have

received substantial identification in the literature as tracking variables for business cycle

turning points. However, the LVQ algorithm can be applied to larger datasets, such as that

in Stock and Watson (2010), with little increase in computational complexity. Datasets with

mixed frequency, as in Aruoba et al. (2009), can also be incorporated, as well as datasets

that are a mix of leading and coincident variables. We intend to pursue such extensions in

future research.
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Figure 1
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Notes: Bivariate random samples generated from two independent bivariate normal distri-
butions. The data represented with circles has mean (0, 0), variance 3 (along both dimen-
sions), and covariance 1. The data represented with crosses has mean (5, 1), variance 3,
and covariance −2. Panel B contains the separation manifold defined by the discriminant
function in (1).
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Figure 2
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Notes: Panel (a) illustrates the nearest neighbor classification rule. Vector x belongs to
class 1, while vector y belongs to class 2. Panel (b) shows hypothetical placement of the
codebook vectors for the data shown in Figure 1
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Figure 3

(a) (b)

x

mc

mi

mj

x

mc

mi

mj

Notes: Adjustments to the codebook vector mc in the two cases in which mc correctly
classifies x (a) or not (b).
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Figure 4

A
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Notes: Example of topology of a SOM. Node A is closer to node B than it is to node C.
Data that maps to node A is “more similar” to data that maps to node B, than it is to data
that maps to node C.
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Table 1
Classification Accuracy with Gaussian DGP

Bayesian Classification LVQ Classification
Expansion Recession Expansion Recession

Expansion 96.74% 3.26% 86.17% 13.83%
(2.41) (5.89)

Recession 41.40% 58.60% 33.31% 66.69%
(14.88) (13.01)

MCC 0.62 0.48
(0.12) (0.12)

Notes: This table gives the confusion matrix and the Matthews Correlation Coefficient
(MCC) for the Monte Carlo experiment described in Section 3 when the true data generating
process is Gaussian inside of each class. In this case the Bayesian classifier is correctly
specified. The presample window for estimation and training consists of 100 periods, and the
out-of-sample classification window is an additional 100 periods. The average and standard
deviation (in parentheses) of the performance metrics over 10000 Monte Carlo repetitions
are reported.
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Table 2
Classification Accuracy with Student-t DGP

Bayesian Classfication LVQ Classification
Expansion Recession Expansion Recession

Expansion 95.15% 4.85% 81.79% 18.21%
(3.46) (6.48)

Recession 64.13% 35.87% 38.68% 61.32%
(16.60) (14.19)

MCC 0.38 0.37
(0.16) (0.12)

Notes: This table gives the confusion matrix and the Matthews Correlation Coefficient
(MCC) for the Monte Carlo experiment described in Section 3 when the true data generating
process is multivariate Student-t inside of each class. In this case the Bayesian classifier is
misspecified. The presample window for estimation and training consists of 100 periods,
and the out-of-sample classification window is an additional 100 periods. The average and
standard deviation (in parentheses) of the performance metrics over 10000 Monte Carlo
repetitions are reported.
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Table 3
U.S. Business Cycle Turning Points Identified in Real-Time

NBER Peak Date LVQ-BOM LVQ-MOM LVQ-EOM
1/1980 1/1980 (126) 1/1980 (133) 1/1980 (152)
7/1981 7/1981 (160) 7/1981 (167) 7/1981 (156)
7/1990 7/1990 (93) 6/1990 (77) 6/1990 (128)
3/2001 3/2001 (96) 3/2001 (107) 3/2001 (121)
12/2007 1/2008 (157) 2/2008 (168) 11/2007 (330)
Average Absolute Error: 0.2 months 0.6 months 0.4 months
Average Days to Identify: 126 130 177

NBER Trough Date LVQ-BOM LVQ-MOM LVQ-EOM
7/1980 7/1980 (126) 7/1980 (137) 8/1980 (157)
11/1982 12/1982 (156) 12/1982 (135) 12/1982 (154)
3/1991 4/1991 (214) 4/1991 (228) 4/1991 (249)
11/2001 12/2001 (307) 12/2001 (320) 12/2001 (303)
6/2009 6/2009 (156) 7/2009 (167) 7/2009 (147)
Average Absolute Error: 0.6 months 0.8 months 1.0 months
Average Days to Identify: 192 197 202

Non-NBER Recessions: 10/91-2/92 10/91-2/92 10/91-2/92

Notes: This table gives NBER-established peak and trough dates for recessions occurring
over the sample period November 1976 to April 2010, along with the turning point dates
established in real time by the LVQ algorithm over this period. Three versions of the
algorithm are reported, one using data available as of the time of the monthly employment
release, one using data available as of the time of the monthly industrial production release,
and one using data available as of the time of the monthly personal income and manufacturing
and trade sales release. These correspond to near the beginning of the month (BOM), middle
of the month (MOM), and end of the month (EOM) respectively. The number in parenthesis
gives the number of days following the last day of the NBER turning point month for which
the LVQ turning point identification would have been available.
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